File size: 23,657 Bytes
dd6bb04
3ace009
 
648dcc8
3ace009
 
 
 
 
 
 
dd6bb04
3ace009
648dcc8
 
f00108d
648dcc8
 
3ace009
648dcc8
 
 
 
 
f00108d
 
648dcc8
f00108d
648dcc8
f00108d
dd6bb04
 
f00108d
 
 
 
 
 
 
 
dd6bb04
 
 
 
f00108d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648dcc8
 
f00108d
 
 
 
 
 
 
 
 
 
 
648dcc8
 
f00108d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648dcc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f00108d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 TinyLLaVA. All Rights Reserved.
import time

import dataclasses
from enum import auto, Enum
from typing import List, Tuple, Optional, Union
import requests
from PIL import Image
from io import BytesIO
import base64
import re

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F

from transformers.utils import logging
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers import CLIPVisionModel, CLIPImageProcessor, SiglipVisionModel, SiglipImageProcessor

from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN

from transformers import AutoConfig, AutoModelForCausalLM, PhiForCausalLM



logger = logging.get_logger(__name__)

# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"

CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15
LOGDIR = "."


class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()
    MPT = auto()
    PLAIN = auto()
    LLAMA_2 = auto()
    TINY_LLAMA = auto()
    QWEN_2 = auto()


@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "###"
    sep2: str = None
    version: str = "Unknown"

    skip_next: bool = False

    def get_prompt(self):
        messages = self.messages
        if len(messages) > 0 and type(messages[0][1]) is tuple:
            messages = self.messages.copy()
            init_role, init_msg = messages[0].copy()
            init_msg = init_msg[0].replace("<image>", "").strip()
            if 'mmtag' in self.version:
                messages[0] = (init_role, init_msg)
                messages.insert(0, (self.roles[0], "<Image><image></Image>"))
                messages.insert(1, (self.roles[1], "Received."))
            else:
                messages[0] = (init_role, "<image>\n" + init_msg)

        if self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(messages):
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")

        return ret

    def append_message(self, role, message):
        self.messages.append([role, message])

    def copy(self):
        return Conversation(
            system=self.system,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            version=self.version)




conv_phi_v0 = Conversation(
    system="A chat between a curious user and an artificial intelligence assistant. "
           "The assistant gives helpful, detailed, and polite answers to the user's questions.",
    roles=("USER", "ASSISTANT"),
    version="phi",
    messages=(),
    offset=0,
    sep_style=SeparatorStyle.TWO,
    sep=" ",
    sep2="<|endoftext|>",
)


def load_image_from_base64(image):
    return Image.open(BytesIO(base64.b64decode(image)))


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


def process_images(images, image_processor, model_cfg):
    image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
    new_images = []
    if image_aspect_ratio == 'pad':
        for image in images:
            image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
            image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
            new_images.append(image)
    else:
        return image_processor(images, return_tensors='pt')['pixel_values']
    if all(x.shape == new_images[0].shape for x in new_images):
        new_images = torch.stack(new_images, dim=0)
    return new_images


def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == 'pt':
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f'Unsupported tensor type: {return_tensors}')
    return input_ids

def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image

ACT_TYPE = {
    'relu': nn.ReLU,
    'gelu': nn.GELU
}

class Connector(nn.Module):
    def __init__(self, config=None):
        super().__init__()
        mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type)
        act_type = config.connector_type.split('_')[-1]
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(ACT_TYPE[act_type]())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
            
        self._connector = nn.Sequential(*modules)
    
    def forward(self, x):
        return self._connector(x)

class VisionTower(nn.Module):
    def __init__(self, cfg, model_name_or_path = 'clip'):
        super().__init__()
        if 'clip' in model_name_or_path:
            self._vision_tower = CLIPVisionModel(cfg)
            self._image_processor = CLIPImageProcessor.from_pretrained(cfg.model_name_or_path)
        else:
            self._vision_tower = SiglipVisionModel(cfg)
            self._image_processor = SiglipImageProcessor.from_pretrained(cfg.model_name_or_path)
            
        self.config = cfg
        
    def forward(self, x, **kwargs):
        image_features = self._vision_tower(x, output_hidden_states=True)
        image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]

        if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
            image_features = image_features[:, 1:]
        elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")

        return image_features
        
    @property
    def vision_tower(self):
        return self._vision_tower
        
    @vision_tower.setter
    def vision_tower(self, vision_tower):
        self._vision_tower = vision_tower

def get_value_from_kwargs(kwargs, name):
    if name in kwargs:
        return kwargs.pop(name)
    else:
        return None
    

class TinyLlavaPreTrainedModel(PreTrainedModel):
    config_class = TinyLlavaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlavaVisionAttention"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True

    def _init_weights(self, module):
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def _supports_sdpa(self):
        return self.language_model._supports_sdpa


class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
    def __init__(self, config: TinyLlavaConfig):
        
        super().__init__(config)

        self.language_model = PhiForCausalLM(config.text_config)
        self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path)
        self.connector = Connector(config)
        self.post_init()

    
    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def tie_weights(self):
        return self.language_model.tie_weights()

    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
                image_sizes
            )
        return self.language_model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
    
    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_labels_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
                image_sizes=image_sizes
            )
        else:
            inputs_embeds = self.language_model.get_input_embeddings()(inputs)

        return self.language_model.generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )
        
    def encode_images(self, images):
        kwargs = {}
        kwargs['vision_feature_layer'] = self.config.vision_feature_layer
        kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
        images = images.to(device=self.device, dtype=self.dtype)
        image_features = self.vision_tower(images, **kwargs)
        image_features = self.connector(image_features)
        return image_features
    
    
    
    def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
                                      inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        image_sizes = kwargs.pop("image_sizes", None)
        inputs = self.language_model.prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            inputs['images'] = images
        if image_sizes is not None:
            inputs['image_sizes'] = image_sizes
        return inputs
        
    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels,
        images, image_sizes=None
    ):
        vision_tower = self.vision_tower
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        
        image_features = self.encode_images(images)

        # TODO: image start / end is not implemented here to support pretraining.
        if getattr(self.config, 'tune_mm_mlp_adapter', False):
            raise NotImplementedError

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- FIXME
        _input_ids = input_ids
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []

            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    cur_image_features = image_features[cur_image_idx]
                    cur_image_idx += 1
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))

            cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]

            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
        if tokenizer_model_max_length is not None:
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
                new_input_embeds_padded.append(torch.cat((
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
                    cur_new_embed
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
            else:
                new_input_embeds_padded.append(torch.cat((
                    cur_new_embed,
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
    
    def chat(
        self,
        prompt: str,
        tokenizer = None,
        image: str = None,
        max_new_tokens: int = 512,
        num_beams = 1,
        top_p=None,
        temperature=0
    ):
        image_processor = self.vision_tower._image_processor

        if image is not None:
            prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt 
        conv = conv_phi_v0.copy()
        conv.append_message(conv.roles[0], prompt)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()
        if image is not None:
            image = load_image(image)
            image_tensor = process_images(image, image_processor, self.config).to(self.device)

        input_ids = (
            tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
            .unsqueeze(0).to(self.device)
        )
        # Generate
        stime = time.time()

        with torch.inference_mode():
            output_ids = self.generate(
                input_ids,
                images=image_tensor,
                do_sample=True if temperature > 0 else False,
                temperature=temperature,
                top_p=top_p,
                num_beams=num_beams,
                pad_token_id=tokenizer.pad_token_id,
                max_new_tokens=max_new_tokens,
                use_cache=True,
                # stopping_criteria=[stopping_criteria],
            )

        # print('inference over')
        generation_time = time.time() - stime
        outputs = tokenizer.batch_decode(
            output_ids, skip_special_tokens=True
        )[0]

        outputs = outputs.strip()

        return outputs, generation_time
    

AutoConfig.register("tinyllava", TinyLlavaConfig)        
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)