File size: 1,896 Bytes
5e149c7 0c324c0 5e149c7 0c324c0 5e149c7 ccdeff9 cfd608e ccdeff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: mit
tags:
- text-classification
- sequence-classification
- xlm-roberta-base
- faq
- questions
datasets:
- clips/mfaq
- daily_dialog
- tau/commonsense_qa
- conv_ai_2
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
pipeline_tag: text-classification
---
## Frequently Asked Questions classifier
This model is trained to determine whether a question/statement is a FAQ, in the domain of products, businesses, website faqs, etc.
For e.g `"What is the warranty of your product?"` In contrast, daily questions such as `"how are you?"`, `"what is your name?"`, or simple statements such as `"this is a tree"`.
## Usage
```python
from transformers import pipeline
classifier = pipeline("text-classification", "timpal0l/xlm-roberta-base-faq-extractor")
label_map = {"LABEL_0" : False, "LABEL_1" : True}
documents = ["What is the warranty for iPhone15?",
"How old are you?",
"Nice to meet you",
"What is your opening hours?",
"What is your name?",
"The weather is nice"]
predictions = classifier(documents)
for p, d in zip(predictions, documents):
print(d, "--->", label_map[p["label"]])
```
```html
What is the warranty for iPhone15? ---> True
How old are you? ---> False
Nice to meet you ---> False
What is your opening hours? ---> True
What is your name? ---> False
The weather is nice ---> False
``` |