Update model config and README
Browse files- README.md +118 -2
- model.safetensors +3 -0
README.md
CHANGED
@@ -2,7 +2,123 @@
|
|
2 |
tags:
|
3 |
- image-classification
|
4 |
- timm
|
5 |
-
|
6 |
-
library_tag: timm
|
7 |
license: apache-2.0
|
|
|
|
|
|
|
8 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- image-classification
|
4 |
- timm
|
5 |
+
library_name: timm
|
|
|
6 |
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
- wit-400m
|
10 |
---
|
11 |
+
# Model card for vit_base_patch16_clip_224.openai_ft_in1k
|
12 |
+
|
13 |
+
A Vision Transformer (ViT) image classification model. Pretrained on WIT-400M image-text pairs by OpenAI using CLIP. Fine-tuned on ImageNet-1k in `timm`. See recipes in [Reproducible scaling laws](https://arxiv.org/abs/2212.07143).
|
14 |
+
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
- **Model Type:** Image classification / feature backbone
|
18 |
+
- **Model Stats:**
|
19 |
+
- Params (M): 86.6
|
20 |
+
- GMACs: 16.9
|
21 |
+
- Activations (M): 16.5
|
22 |
+
- Image size: 224 x 224
|
23 |
+
- **Papers:**
|
24 |
+
- Learning Transferable Visual Models From Natural Language Supervision: https://arxiv.org/abs/2103.00020
|
25 |
+
- Reproducible scaling laws for contrastive language-image learning: https://arxiv.org/abs/2212.07143
|
26 |
+
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2
|
27 |
+
- **Dataset:** ImageNet-1k
|
28 |
+
- **Pretrain Dataset:**
|
29 |
+
- WIT-400M
|
30 |
+
|
31 |
+
## Model Usage
|
32 |
+
### Image Classification
|
33 |
+
```python
|
34 |
+
from urllib.request import urlopen
|
35 |
+
from PIL import Image
|
36 |
+
import timm
|
37 |
+
|
38 |
+
img = Image.open(urlopen(
|
39 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
40 |
+
))
|
41 |
+
|
42 |
+
model = timm.create_model('vit_base_patch16_clip_224.openai_ft_in1k', pretrained=True)
|
43 |
+
model = model.eval()
|
44 |
+
|
45 |
+
# get model specific transforms (normalization, resize)
|
46 |
+
data_config = timm.data.resolve_model_data_config(model)
|
47 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
48 |
+
|
49 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
50 |
+
|
51 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
52 |
+
```
|
53 |
+
|
54 |
+
### Image Embeddings
|
55 |
+
```python
|
56 |
+
from urllib.request import urlopen
|
57 |
+
from PIL import Image
|
58 |
+
import timm
|
59 |
+
|
60 |
+
img = Image.open(urlopen(
|
61 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
62 |
+
))
|
63 |
+
|
64 |
+
model = timm.create_model(
|
65 |
+
'vit_base_patch16_clip_224.openai_ft_in1k',
|
66 |
+
pretrained=True,
|
67 |
+
num_classes=0, # remove classifier nn.Linear
|
68 |
+
)
|
69 |
+
model = model.eval()
|
70 |
+
|
71 |
+
# get model specific transforms (normalization, resize)
|
72 |
+
data_config = timm.data.resolve_model_data_config(model)
|
73 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
74 |
+
|
75 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
76 |
+
|
77 |
+
# or equivalently (without needing to set num_classes=0)
|
78 |
+
|
79 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
80 |
+
# output is unpooled, a (1, 197, 768) shaped tensor
|
81 |
+
|
82 |
+
output = model.forward_head(output, pre_logits=True)
|
83 |
+
# output is a (1, num_features) shaped tensor
|
84 |
+
```
|
85 |
+
|
86 |
+
## Model Comparison
|
87 |
+
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|
88 |
+
|
89 |
+
## Citation
|
90 |
+
```bibtex
|
91 |
+
@inproceedings{Radford2021LearningTV,
|
92 |
+
title={Learning Transferable Visual Models From Natural Language Supervision},
|
93 |
+
author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
|
94 |
+
booktitle={ICML},
|
95 |
+
year={2021}
|
96 |
+
}
|
97 |
+
```
|
98 |
+
```bibtex
|
99 |
+
@article{cherti2022reproducible,
|
100 |
+
title={Reproducible scaling laws for contrastive language-image learning},
|
101 |
+
author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia},
|
102 |
+
journal={arXiv preprint arXiv:2212.07143},
|
103 |
+
year={2022}
|
104 |
+
}
|
105 |
+
```
|
106 |
+
```bibtex
|
107 |
+
@article{dosovitskiy2020vit,
|
108 |
+
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
|
109 |
+
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
|
110 |
+
journal={ICLR},
|
111 |
+
year={2021}
|
112 |
+
}
|
113 |
+
```
|
114 |
+
```bibtex
|
115 |
+
@misc{rw2019timm,
|
116 |
+
author = {Ross Wightman},
|
117 |
+
title = {PyTorch Image Models},
|
118 |
+
year = {2019},
|
119 |
+
publisher = {GitHub},
|
120 |
+
journal = {GitHub repository},
|
121 |
+
doi = {10.5281/zenodo.4414861},
|
122 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
123 |
+
}
|
124 |
+
```
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a46cbc417c83033cf6ae5bd91d9c6b2aec7a949fb85e8d83aa1d370afea14285
|
3 |
+
size 346287868
|