timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
003653b
1 Parent(s): bee9558
Files changed (4) hide show
  1. README.md +125 -0
  2. config.json +39 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for repvit_m0_9.dist_450e_in1k
11
+
12
+ A RepViT image classification model. Trained on ImageNet-1k with distillation by paper authors.
13
+
14
+ ## Model Details
15
+ - **Model Type:** Image classification / feature backbone
16
+ - **Model Stats:**
17
+ - Params (M): 5.5
18
+ - GMACs: 0.8
19
+ - Activations (M): 7.4
20
+ - Image size: 224 x 224
21
+ - **Papers:**
22
+ - RepViT: Revisiting Mobile CNN From ViT Perspective: https://arxiv.org/abs/2307.09283
23
+ - **Original:** https://github.com/THU-MIG/RepViT
24
+ - **Dataset:** ImageNet-1k
25
+
26
+ ## Model Usage
27
+ ### Image Classification
28
+ ```python
29
+ from urllib.request import urlopen
30
+ from PIL import Image
31
+ import timm
32
+
33
+ img = Image.open(urlopen(
34
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
35
+ ))
36
+
37
+ model = timm.create_model('repvit_m0_9.dist_450e_in1k', pretrained=True)
38
+ model = model.eval()
39
+
40
+ # get model specific transforms (normalization, resize)
41
+ data_config = timm.data.resolve_model_data_config(model)
42
+ transforms = timm.data.create_transform(**data_config, is_training=False)
43
+
44
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
45
+
46
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
47
+ ```
48
+
49
+ ### Feature Map Extraction
50
+ ```python
51
+ from urllib.request import urlopen
52
+ from PIL import Image
53
+ import timm
54
+
55
+ img = Image.open(urlopen(
56
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
57
+ ))
58
+
59
+ model = timm.create_model(
60
+ 'repvit_m0_9.dist_450e_in1k',
61
+ pretrained=True,
62
+ features_only=True,
63
+ )
64
+ model = model.eval()
65
+
66
+ # get model specific transforms (normalization, resize)
67
+ data_config = timm.data.resolve_model_data_config(model)
68
+ transforms = timm.data.create_transform(**data_config, is_training=False)
69
+
70
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
71
+
72
+ for o in output:
73
+ # print shape of each feature map in output
74
+ # e.g.:
75
+ # torch.Size([1, 48, 56, 56])
76
+ # torch.Size([1, 96, 28, 28])
77
+ # torch.Size([1, 192, 14, 14])
78
+ # torch.Size([1, 384, 7, 7])
79
+
80
+ print(o.shape)
81
+ ```
82
+
83
+ ### Image Embeddings
84
+ ```python
85
+ from urllib.request import urlopen
86
+ from PIL import Image
87
+ import timm
88
+
89
+ img = Image.open(urlopen(
90
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
91
+ ))
92
+
93
+ model = timm.create_model(
94
+ 'repvit_m0_9.dist_450e_in1k',
95
+ pretrained=True,
96
+ num_classes=0, # remove classifier nn.Linear
97
+ )
98
+ model = model.eval()
99
+
100
+ # get model specific transforms (normalization, resize)
101
+ data_config = timm.data.resolve_model_data_config(model)
102
+ transforms = timm.data.create_transform(**data_config, is_training=False)
103
+
104
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
105
+
106
+ # or equivalently (without needing to set num_classes=0)
107
+
108
+ output = model.forward_features(transforms(img).unsqueeze(0))
109
+ # output is unpooled, a (1, 384, 7, 7) shaped tensor
110
+
111
+ output = model.forward_head(output, pre_logits=True)
112
+ # output is a (1, num_features) shaped tensor
113
+ ```
114
+
115
+ ## Citation
116
+ ```bibtex
117
+ @misc{wang2023repvit,
118
+ title={RepViT: Revisiting Mobile CNN From ViT Perspective},
119
+ author={Ao Wang and Hui Chen and Zijia Lin and Hengjun Pu and Guiguang Ding},
120
+ year={2023},
121
+ eprint={2307.09283},
122
+ archivePrefix={arXiv},
123
+ primaryClass={cs.CV}
124
+ }
125
+ ```
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "repvit_m0_9",
3
+ "num_classes": 1000,
4
+ "num_features": 384,
5
+ "global_pool": "avg",
6
+ "pretrained_cfg": {
7
+ "tag": "dist_450e_in1k",
8
+ "custom_load": false,
9
+ "input_size": [
10
+ 3,
11
+ 224,
12
+ 224
13
+ ],
14
+ "fixed_input_size": false,
15
+ "interpolation": "bicubic",
16
+ "crop_pct": 0.95,
17
+ "crop_mode": "center",
18
+ "mean": [
19
+ 0.485,
20
+ 0.456,
21
+ 0.406
22
+ ],
23
+ "std": [
24
+ 0.229,
25
+ 0.224,
26
+ 0.225
27
+ ],
28
+ "num_classes": 1000,
29
+ "pool_size": [
30
+ 7,
31
+ 7
32
+ ],
33
+ "first_conv": "stem.conv1.c",
34
+ "classifier": [
35
+ "head.head.l",
36
+ "head.head_dist.l"
37
+ ]
38
+ }
39
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2dd32622df856ea7a68d6b241c1623f0e6fbec8acde381a3519cb5a5463e9cf
3
+ size 22232904
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7eeb5317f4a88139c57d3a75d8642371b9da017a35b58d2afd5f9f943fef297
3
+ size 22411566