timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
bab93e2
1 Parent(s): 5cc231c

Update model config and README

Browse files
Files changed (2) hide show
  1. README.md +241 -1
  2. config.json +3 -2
README.md CHANGED
@@ -3,5 +3,245 @@ tags:
3
  - image-classification
4
  - timm
5
  library_tag: timm
 
 
 
6
  ---
7
- # Model card for maxvit_base_tf_512.in1k
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  - image-classification
4
  - timm
5
  library_tag: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
  ---
10
+ # Model card for maxvit_base_tf_512.in1k
11
+
12
+ An official MaxViT image classification model. Trained in tensorflow on ImageNet-1k by paper authors.
13
+ Ported from official Tensorflow implementation (https://github.com/google-research/maxvit) to PyTorch by Ross Wightman.
14
+
15
+ ### Model Variants in [maxxvit.py](https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/maxxvit.py)
16
+
17
+ MaxxViT covers a number of related model architectures that share a common structure including:
18
+ - CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages.
19
+ - MaxViT - Uniform blocks across all stages, each containing a MBConv (depthwise-separable) convolution block followed by two self-attention blocks with different partitioning schemes (window followed by grid).
20
+ - CoAtNeXt - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in CoAtNet. All normalization layers are LayerNorm (no BatchNorm).
21
+ - MaxxViT - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in MaxViT. All normalization layers are LayerNorm (no BatchNorm).
22
+ - MaxxViT-V2 - A MaxxViT variation that removes the window block attention leaving only ConvNeXt blocks and grid attention w/ more width to compensate.
23
+
24
+ Aside from the major variants listed above, there are more subtle changes from model to model. Any model name with the string `rw` are `timm` specific configs w/ modelling adjustments made to favour PyTorch eager use. These were created while training initial reproductions of the models so there are variations.
25
+ All models with the string `tf` are models exactly matching Tensorflow based models by the original paper authors with weights ported to PyTorch. This covers a number of MaxViT models. The official CoAtNet models were never released.
26
+
27
+ ## Model Details
28
+ - **Model Type:** Image classification / feature backbone
29
+ - **Model Stats:**
30
+ - Params (M): 119.9
31
+ - GMACs: 138.0
32
+ - Activations (M): 704.0
33
+ - Image size: 512 x 512
34
+ - **Papers:**
35
+ - MaxViT: Multi-Axis Vision Transformer: https://arxiv.org/abs/2204.01697
36
+ - **Dataset:** ImageNet-1k
37
+
38
+ ## Model Usage
39
+ ### Image Classification
40
+ ```python
41
+ from urllib.request import urlopen
42
+ from PIL import Image
43
+ import timm
44
+
45
+ img = Image.open(
46
+ urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
47
+
48
+ model = timm.create_model('maxvit_base_tf_512.in1k', pretrained=True)
49
+ model = model.eval()
50
+
51
+ # get model specific transforms (normalization, resize)
52
+ data_config = timm.data.resolve_model_data_config(model)
53
+ transforms = timm.data.create_transform(**data_config, is_training=False)
54
+
55
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
56
+
57
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
58
+ ```
59
+
60
+ ### Feature Map Extraction
61
+ ```python
62
+ from urllib.request import urlopen
63
+ from PIL import Image
64
+ import timm
65
+
66
+ img = Image.open(
67
+ urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
68
+
69
+ model = timm.create_model(
70
+ 'maxvit_base_tf_512.in1k',
71
+ pretrained=True,
72
+ features_only=True,
73
+ )
74
+ model = model.eval()
75
+
76
+ # get model specific transforms (normalization, resize)
77
+ data_config = timm.data.resolve_model_data_config(model)
78
+ transforms = timm.data.create_transform(**data_config, is_training=False)
79
+
80
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
81
+
82
+ for o in output:
83
+ # print shape of each feature map in output
84
+ # e.g.:
85
+ # torch.Size([1, 128, 192, 192])
86
+ # torch.Size([1, 128, 96, 96])
87
+ # torch.Size([1, 256, 48, 48])
88
+ # torch.Size([1, 512, 24, 24])
89
+ # torch.Size([1, 1024, 12, 12])
90
+ print(o.shape)
91
+ ```
92
+
93
+ ### Image Embeddings
94
+ ```python
95
+ from urllib.request import urlopen
96
+ from PIL import Image
97
+ import timm
98
+
99
+ img = Image.open(
100
+ urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
101
+
102
+ model = timm.create_model(
103
+ 'maxvit_base_tf_512.in1k',
104
+ pretrained=True,
105
+ num_classes=0, # remove classifier nn.Linear
106
+ )
107
+ model = model.eval()
108
+
109
+ # get model specific transforms (normalization, resize)
110
+ data_config = timm.data.resolve_model_data_config(model)
111
+ transforms = timm.data.create_transform(**data_config, is_training=False)
112
+
113
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
114
+
115
+ # or equivalently (without needing to set num_classes=0)
116
+
117
+ output = model.forward_features(transforms(img).unsqueeze(0))
118
+ # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
119
+
120
+ output = model.forward_head(output, pre_logits=True)
121
+ # output is (batch_size, num_features) tensor
122
+ ```
123
+
124
+ ## Model Comparison
125
+ ### By Top-1
126
+ |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)|
127
+ |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:|
128
+ |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22|
129
+ |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76|
130
+ |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99|
131
+ |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15|
132
+ |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84|
133
+ |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90|
134
+ |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95|
135
+ |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74|
136
+ |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43|
137
+ |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64|
138
+ |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77|
139
+ |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99|
140
+ |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22|
141
+ |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15|
142
+ |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78|
143
+ |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90|
144
+ |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84|
145
+ |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77|
146
+ |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59|
147
+ |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65|
148
+ |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42|
149
+ |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35|
150
+ |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13|
151
+ |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01|
152
+ |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38|
153
+ |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78|
154
+ |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30|
155
+ |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17|
156
+ |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92|
157
+ |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60|
158
+ |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11|
159
+ |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78|
160
+ |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47|
161
+ |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05|
162
+ |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05|
163
+ |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92|
164
+ |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28|
165
+ |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04|
166
+ |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73|
167
+ |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34|
168
+ |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80|
169
+ |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41|
170
+ |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86|
171
+
172
+
173
+ ### By Throughput (samples / sec)
174
+ |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)|
175
+ |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:|
176
+ |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80|
177
+ |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41|
178
+ |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34|
179
+ |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73|
180
+ |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04|
181
+ |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86|
182
+ |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05|
183
+ |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92|
184
+ |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05|
185
+ |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28|
186
+ |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11|
187
+ |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47|
188
+ |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13|
189
+ |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78|
190
+ |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60|
191
+ |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92|
192
+ |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30|
193
+ |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17|
194
+ |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22|
195
+ |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78|
196
+ |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78|
197
+ |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38|
198
+ |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77|
199
+ |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64|
200
+ |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01|
201
+ |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42|
202
+ |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35|
203
+ |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65|
204
+ |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43|
205
+ |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74|
206
+ |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59|
207
+ |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95|
208
+ |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90|
209
+ |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90|
210
+ |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77|
211
+ |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84|
212
+ |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84|
213
+ |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99|
214
+ |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99|
215
+ |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76|
216
+ |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15|
217
+ |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15|
218
+ |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22|
219
+
220
+ ## Citation
221
+ ```bibtex
222
+ @misc{rw2019timm,
223
+ author = {Ross Wightman},
224
+ title = {PyTorch Image Models},
225
+ year = {2019},
226
+ publisher = {GitHub},
227
+ journal = {GitHub repository},
228
+ doi = {10.5281/zenodo.4414861},
229
+ howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
230
+ }
231
+ ```
232
+ ```bibtex
233
+ @article{tu2022maxvit,
234
+ title={MaxViT: Multi-Axis Vision Transformer},
235
+ author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
236
+ journal={ECCV},
237
+ year={2022},
238
+ }
239
+ ```
240
+ ```bibtex
241
+ @article{dai2021coatnet,
242
+ title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
243
+ author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
244
+ journal={arXiv preprint arXiv:2106.04803},
245
+ year={2021}
246
+ }
247
+ ```
config.json CHANGED
@@ -4,6 +4,7 @@
4
  "num_features": 768,
5
  "global_pool": "avg",
6
  "pretrained_cfg": {
 
7
  "custom_load": false,
8
  "input_size": [
9
  3,
@@ -26,8 +27,8 @@
26
  ],
27
  "num_classes": 1000,
28
  "pool_size": [
29
- 7,
30
- 7
31
  ],
32
  "first_conv": "stem.conv1",
33
  "classifier": "head.fc"
 
4
  "num_features": 768,
5
  "global_pool": "avg",
6
  "pretrained_cfg": {
7
+ "tag": "in1k",
8
  "custom_load": false,
9
  "input_size": [
10
  3,
 
27
  ],
28
  "num_classes": 1000,
29
  "pool_size": [
30
+ 16,
31
+ 16
32
  ],
33
  "first_conv": "stem.conv1",
34
  "classifier": "head.fc"