arjunashok commited on
Commit
0888f9a
β€’
1 Parent(s): f439182

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -19
README.md CHANGED
@@ -9,7 +9,6 @@ tags:
9
  - time-series
10
  ---
11
 
12
-
13
  # Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
14
 
15
  ![lag-llama-architecture](images/lagllama.webp)
@@ -18,19 +17,16 @@ Lag-Llama is the <b>first open-source foundation model for time series forecasti
18
 
19
  [[Tweet Thread](https://twitter.com/arjunashok37/status/1755261111233114165)]
20
 
21
- [[Code](https://github.com/time-series-foundation-models/lag-llama)] [[Model Weights](https://huggingface.co/time-series-foundation-models/Lag-Llama)] [[Colab Demo 1: Zero-Shot Forecasting](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing)] [[Colab Demo 2: (Preliminary Finetuning)](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing)]
22
 
23
  [[Paper](https://arxiv.org/abs/2310.08278)]
24
 
25
  [[Video](https://www.youtube.com/watch?v=Mf2FOzDPxck)]
26
-
27
- ____
28
- This HuggingFace model houses the <a href="https://huggingface.co/time-series-foundation-models/Lag-Llama/blob/main/lag-llama.ckpt" target="_blank">pretrained checkpoint</a> of Lag-Llama.
29
-
30
  ____
31
 
32
  <b>Updates</b>:
33
 
 
34
  * **9-Apr-2024**: We have released a 15-minute video πŸŽ₯ on Lag-Llama on [YouTube](https://www.youtube.com/watch?v=Mf2FOzDPxck).
35
  * **5-Apr-2024**: Added a [section](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?authuser=1#scrollTo=Mj9LXMpJ01d7&line=6&uniqifier=1) in Colab Demo 1 on the importance of tuning the context length for zero-shot forecasting. Added a [best practices section](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#best-practices) in the README; added recommendations for finetuning. These recommendations will be demonstrated with an example in [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing) soon.
36
  * **4-Apr-2024**: We have updated our requirements file with new versions of certain packages. Please update/recreate your environments if you have previously used the code locally.
@@ -40,30 +36,22 @@ ____
40
 
41
  ____
42
 
43
- Current Features:
44
 
45
  πŸ’« <b>Zero-shot forecasting</b> on a dataset of <b>any frequency</b> for <b>any prediction length</b>, using <a href="https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing" target="_blank">Colab Demo 1.</a><br/>
46
 
47
  πŸ’« <b>Finetuning</b> on a dataset using [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing).
48
 
49
- **Note**: Please see the [best practices section](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#best-practices) when using the model for zero-shot prediction and finetuning.
50
-
51
 
52
- ____
53
-
54
- Coming Soon:
55
-
56
- ⭐ Scripts to pretrain Lag-Llama on your own large-scale data
57
-
58
- ⭐ Scripts to <b>reproduce</b> all results in the paper.
59
 
60
  ____
61
 
62
- We are currently looking for contributors for the following:
63
 
64
- ⭐ An <b>online gradio demo</b> where you can upload time series and get zero-shot predictions and perform finetuning.
65
 
66
- ____
67
 
68
  ## Best Practices
69
 
 
9
  - time-series
10
  ---
11
 
 
12
  # Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
13
 
14
  ![lag-llama-architecture](images/lagllama.webp)
 
17
 
18
  [[Tweet Thread](https://twitter.com/arjunashok37/status/1755261111233114165)]
19
 
20
+ [[Model Weights](https://huggingface.co/time-series-foundation-models/Lag-Llama)] [[Colab Demo 1: Zero-Shot Forecasting](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing)] [[Colab Demo 2: (Preliminary Finetuning)](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing)]
21
 
22
  [[Paper](https://arxiv.org/abs/2310.08278)]
23
 
24
  [[Video](https://www.youtube.com/watch?v=Mf2FOzDPxck)]
 
 
 
 
25
  ____
26
 
27
  <b>Updates</b>:
28
 
29
+ * **16-Apr-2024**: Released pretraining and finetuning scripts to replicate the experiments in the paper. See [Reproducing Experiments in the Paper](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#reproducing-experiments-in-the-paper) for details.
30
  * **9-Apr-2024**: We have released a 15-minute video πŸŽ₯ on Lag-Llama on [YouTube](https://www.youtube.com/watch?v=Mf2FOzDPxck).
31
  * **5-Apr-2024**: Added a [section](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?authuser=1#scrollTo=Mj9LXMpJ01d7&line=6&uniqifier=1) in Colab Demo 1 on the importance of tuning the context length for zero-shot forecasting. Added a [best practices section](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#best-practices) in the README; added recommendations for finetuning. These recommendations will be demonstrated with an example in [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing) soon.
32
  * **4-Apr-2024**: We have updated our requirements file with new versions of certain packages. Please update/recreate your environments if you have previously used the code locally.
 
36
 
37
  ____
38
 
39
+ **Current Features**:
40
 
41
  πŸ’« <b>Zero-shot forecasting</b> on a dataset of <b>any frequency</b> for <b>any prediction length</b>, using <a href="https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing" target="_blank">Colab Demo 1.</a><br/>
42
 
43
  πŸ’« <b>Finetuning</b> on a dataset using [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing).
44
 
45
+ πŸ’« <b>Reproducing</b> experiments in the paper using the released scripts. See [Reproducing Experiments in the Paper](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#reproducing-experiments-in-the-paper) for details.
 
46
 
47
+ **Note**: Please see the [best practices section](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#best-practices) when using the model for zero-shot prediction and finetuning.
 
 
 
 
 
 
48
 
49
  ____
50
 
51
+ ## Reproducing Experiments in the Paper
52
 
53
+ To replicate the pretraining setup used in the paper, please see [the pretraining script](scripts/pretrain.sh). Once a model is pretrained, instructions to finetune it with the setup in the paper can be found in [the finetuning script](scripts/finetune.sh).
54
 
 
55
 
56
  ## Best Practices
57