arjunashok
commited on
Commit
β’
0888f9a
1
Parent(s):
f439182
Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,6 @@ tags:
|
|
9 |
- time-series
|
10 |
---
|
11 |
|
12 |
-
|
13 |
# Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
|
14 |
|
15 |
![lag-llama-architecture](images/lagllama.webp)
|
@@ -18,19 +17,16 @@ Lag-Llama is the <b>first open-source foundation model for time series forecasti
|
|
18 |
|
19 |
[[Tweet Thread](https://twitter.com/arjunashok37/status/1755261111233114165)]
|
20 |
|
21 |
-
[[
|
22 |
|
23 |
[[Paper](https://arxiv.org/abs/2310.08278)]
|
24 |
|
25 |
[[Video](https://www.youtube.com/watch?v=Mf2FOzDPxck)]
|
26 |
-
|
27 |
-
____
|
28 |
-
This HuggingFace model houses the <a href="https://huggingface.co/time-series-foundation-models/Lag-Llama/blob/main/lag-llama.ckpt" target="_blank">pretrained checkpoint</a> of Lag-Llama.
|
29 |
-
|
30 |
____
|
31 |
|
32 |
<b>Updates</b>:
|
33 |
|
|
|
34 |
* **9-Apr-2024**: We have released a 15-minute video π₯ on Lag-Llama on [YouTube](https://www.youtube.com/watch?v=Mf2FOzDPxck).
|
35 |
* **5-Apr-2024**: Added a [section](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?authuser=1#scrollTo=Mj9LXMpJ01d7&line=6&uniqifier=1) in Colab Demo 1 on the importance of tuning the context length for zero-shot forecasting. Added a [best practices section](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#best-practices) in the README; added recommendations for finetuning. These recommendations will be demonstrated with an example in [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing) soon.
|
36 |
* **4-Apr-2024**: We have updated our requirements file with new versions of certain packages. Please update/recreate your environments if you have previously used the code locally.
|
@@ -40,30 +36,22 @@ ____
|
|
40 |
|
41 |
____
|
42 |
|
43 |
-
Current Features
|
44 |
|
45 |
π« <b>Zero-shot forecasting</b> on a dataset of <b>any frequency</b> for <b>any prediction length</b>, using <a href="https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing" target="_blank">Colab Demo 1.</a><br/>
|
46 |
|
47 |
π« <b>Finetuning</b> on a dataset using [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing).
|
48 |
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
Coming Soon:
|
55 |
-
|
56 |
-
β Scripts to pretrain Lag-Llama on your own large-scale data
|
57 |
-
|
58 |
-
β Scripts to <b>reproduce</b> all results in the paper.
|
59 |
|
60 |
____
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
|
66 |
-
____
|
67 |
|
68 |
## Best Practices
|
69 |
|
|
|
9 |
- time-series
|
10 |
---
|
11 |
|
|
|
12 |
# Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
|
13 |
|
14 |
![lag-llama-architecture](images/lagllama.webp)
|
|
|
17 |
|
18 |
[[Tweet Thread](https://twitter.com/arjunashok37/status/1755261111233114165)]
|
19 |
|
20 |
+
[[Model Weights](https://huggingface.co/time-series-foundation-models/Lag-Llama)] [[Colab Demo 1: Zero-Shot Forecasting](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing)] [[Colab Demo 2: (Preliminary Finetuning)](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing)]
|
21 |
|
22 |
[[Paper](https://arxiv.org/abs/2310.08278)]
|
23 |
|
24 |
[[Video](https://www.youtube.com/watch?v=Mf2FOzDPxck)]
|
|
|
|
|
|
|
|
|
25 |
____
|
26 |
|
27 |
<b>Updates</b>:
|
28 |
|
29 |
+
* **16-Apr-2024**: Released pretraining and finetuning scripts to replicate the experiments in the paper. See [Reproducing Experiments in the Paper](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#reproducing-experiments-in-the-paper) for details.
|
30 |
* **9-Apr-2024**: We have released a 15-minute video π₯ on Lag-Llama on [YouTube](https://www.youtube.com/watch?v=Mf2FOzDPxck).
|
31 |
* **5-Apr-2024**: Added a [section](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?authuser=1#scrollTo=Mj9LXMpJ01d7&line=6&uniqifier=1) in Colab Demo 1 on the importance of tuning the context length for zero-shot forecasting. Added a [best practices section](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#best-practices) in the README; added recommendations for finetuning. These recommendations will be demonstrated with an example in [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing) soon.
|
32 |
* **4-Apr-2024**: We have updated our requirements file with new versions of certain packages. Please update/recreate your environments if you have previously used the code locally.
|
|
|
36 |
|
37 |
____
|
38 |
|
39 |
+
**Current Features**:
|
40 |
|
41 |
π« <b>Zero-shot forecasting</b> on a dataset of <b>any frequency</b> for <b>any prediction length</b>, using <a href="https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing" target="_blank">Colab Demo 1.</a><br/>
|
42 |
|
43 |
π« <b>Finetuning</b> on a dataset using [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing).
|
44 |
|
45 |
+
π« <b>Reproducing</b> experiments in the paper using the released scripts. See [Reproducing Experiments in the Paper](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#reproducing-experiments-in-the-paper) for details.
|
|
|
46 |
|
47 |
+
**Note**: Please see the [best practices section](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#best-practices) when using the model for zero-shot prediction and finetuning.
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
____
|
50 |
|
51 |
+
## Reproducing Experiments in the Paper
|
52 |
|
53 |
+
To replicate the pretraining setup used in the paper, please see [the pretraining script](scripts/pretrain.sh). Once a model is pretrained, instructions to finetune it with the setup in the paper can be found in [the finetuning script](scripts/finetune.sh).
|
54 |
|
|
|
55 |
|
56 |
## Best Practices
|
57 |
|