|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Falcon configuration""" |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", |
|
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", |
|
} |
|
|
|
|
|
class FalconConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the |
|
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 65024): |
|
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`FalconModel`] |
|
hidden_size (`int`, *optional*, defaults to 4544): |
|
Dimension of the hidden representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 71): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether the model should return the last key/values attentions (not used by all models). Only relevant if |
|
`config.is_decoder=True`. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon used by the layer normalization layers. |
|
hidden_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for MLP layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for attention layers. |
|
num_kv_heads (`int`, *optional*): |
|
Number of key-value heads to use per attention layer. If unset, defaults to the same value as |
|
`num_attention_heads`. |
|
alibi (`bool`, *optional*, defaults to `False`): |
|
Whether to use ALiBi positional biases during self-attention. |
|
new_decoder_architecture (`bool`, *optional*, defaults to `False`): |
|
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn` |
|
arguments are ignored, as the new decoder always uses parallel attention. |
|
multi_query (`bool`, *optional*, defaults to `True`): |
|
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`. |
|
parallel_attn (`bool`, *optional*, defaults to `True`): |
|
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive |
|
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`. |
|
bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use bias on Linear layers. |
|
bos_token_id (`int`, *optional*, defaults to 11): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 11): |
|
The id of the "end-of-sequence" token. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import FalconModel, FalconConfig |
|
|
|
>>> # Initializing a small (2-layer) Falcon configuration |
|
>>> configuration = FalconConfig(num_hidden_layers=2) |
|
|
|
>>> # Initializing a model from the small configuration |
|
>>> model = FalconModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "falcon" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=65024, |
|
hidden_size=4544, |
|
num_hidden_layers=32, |
|
num_attention_heads=71, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
use_cache=True, |
|
hidden_dropout=0.0, |
|
attention_dropout=0.0, |
|
num_kv_heads=None, |
|
alibi=False, |
|
new_decoder_architecture=False, |
|
multi_query=True, |
|
parallel_attn=True, |
|
bias=False, |
|
bos_token_id=11, |
|
eos_token_id=11, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
|
|
n_embed = kwargs.pop("n_embed", None) |
|
self.hidden_size = hidden_size if n_embed is None else n_embed |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.use_cache = use_cache |
|
self.hidden_dropout = hidden_dropout |
|
self.attention_dropout = attention_dropout |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads |
|
self.alibi = alibi |
|
self.new_decoder_architecture = new_decoder_architecture |
|
self.multi_query = multi_query |
|
self.parallel_attn = parallel_attn |
|
self.bias = bias |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
@property |
|
def head_dim(self): |
|
return self.hidden_size // self.num_attention_heads |
|
|
|
@property |
|
def rotary(self): |
|
return not self.alibi |
|
|