--- license: apache-2.0 datasets: - BelleGroup/train_0.5M_CN language: - en - zh tags: - text-generation-inference widget: - text: |- <|im_start|>user 请以『春天的北京』为题写一首诗歌 <|im_end|> <|im_start|>assistant example_title: generation zh --- # Baichuan 7B ChatML ## 介绍 Introduction `baichuan-7B-chatml` 是支持多轮对话兼容于 ChatML 的模型。 模型基于 [baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) 微调而成。 `baichuan-7B-chatml` 模型支持商用。但按照baichuan-7B的要求,如果将baichuan-7B衍生品用作商业用途,需要联系[baichuan-7B 的许可方](https://github.com/baichuan-inc/baichuan-7B#%E5%8D%8F%E8%AE%AE)。 __需要注意:在面对事实性知识任务时,模型可能会生成不正确的信息或者产生不稳定的输出(有时可以返回正确答案,有时不能)。__ `baichuan-7B-chatml` is a model that supports multi-turn dialog and is compatible with ChatML. The model is fine-tuned based on [baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B). `baichuan-7B-chatml` model supports commercial use. However, according to the requirements of baichuan-7B, if baichuan-7B derivatives are used for commercial purposes, you need to contact [baichuan-7B](https://github.com/baichuan-inc/baichuan-7B#%E5%8D%8F%E8%AE%AE)。 __Note: When dealing with factual knowledge tasks, it may generate incorrect information or unstable output (sometimes it can return the correct answer, sometimes not).__ ## 代码示例 Examples 模型在百川的基础上提供了对轮对话的函数供调用。 The model provides a function for multi-turn dialogs. ```ipython >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("tibok/baichuan-7B-chatml", trust_remote_code=True) >>> model = AutoModelForCausalLM.from_pretrained("tibok/baichuan-7B-chatml", device_map="auto", trust_remote_code=True) >>> response, history = model.chat(tokenizer, "请以『春天的北京』为题写一首诗歌", history=[]) 春天的北京, 花开万丈, 春意盎然, 清风送暖。 <|im_end|> >>> response, history = model.chat(tokenizer, "能不能再写一首关于香山的?", history=history) >>> print(response) 香山之巅, 芳草连天。 清泉潺潺, 山峦绵绵。 <|im_end|> ``` ## 更多细节 Details - Dataset: [BelleGroup/train_0.5M_CN](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN) - steps: 13800 - batch_size: 8 - seq_len: 2048