Upload 11 files
Browse files- README.md +70 -3
- config.json +85 -0
- configuration_florence2.py +340 -0
- generation_config.json +4 -0
- model.safetensors +3 -0
- modeling_florence2.py +0 -0
- preprocessor_config.json +33 -0
- processing_florence2.py +1088 -0
- tokenizer.json +0 -0
- tokenizer_config.json +4 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,70 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model:
|
4 |
+
- microsoft/Florence-2-large
|
5 |
+
datasets:
|
6 |
+
- Ejafa/ye-pop
|
7 |
+
tags:
|
8 |
+
- art
|
9 |
+
pipeline_tag: image-to-text
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
---
|
13 |
+
# microsoft/Florence-2-large tuned on Ejafa/ye-pop captioned with CogVLM2
|
14 |
+
|
15 |
+
This repository contains a fine-tuned version of the `microsoft/Florence-2-large` model. The model has been tuned on a 40,000 image subset of the `Ejafa/ye-pop` dataset, with captions generated using `THUDM/cogvlm2-llama3-chat-19B`.
|
16 |
+
|
17 |
+
## Training Details
|
18 |
+
|
19 |
+
- **Vision Encoder**: The vision encoder was frozen during training.
|
20 |
+
- **Batch Size**: 64
|
21 |
+
- **Gradient Accumulation Steps**: 16
|
22 |
+
- **Learning Rate**: 5.12e-05
|
23 |
+
- **Optimizer**: AdamW
|
24 |
+
- **Scheduler**: polynomial
|
25 |
+
- **Epochs**: 8.36
|
26 |
+
|
27 |
+
## Dataset
|
28 |
+
|
29 |
+
The fine-tuning process utilized a 40,000 image subset from the `Ejafa/ye-pop` dataset. This dataset contains a wide array of images with varying subjects, providing a robust training ground for improving the model's captioning abilities.
|
30 |
+
|
31 |
+
## Captioning
|
32 |
+
|
33 |
+
The captions were generated using `THUDM/cogvlm2-llama3-chat-19B` and then post-processed with `google/gemma-2-9b` to remove vagueness.
|
34 |
+
|
35 |
+
## Usage
|
36 |
+
|
37 |
+
To use this model, you can load it directly from the Hugging Face Model Hub:
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, AutoConfig
|
41 |
+
import torch
|
42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
model = AutoModelForCausalLM.from_pretrained("thwri/CogFlorence-2.2-Large", trust_remote_code=True).to(device).eval()
|
44 |
+
processor = AutoProcessor.from_pretrained("thwri/CogFlorence-2.2-Large", trust_remote_code=True)
|
45 |
+
# Function to run the model on an example
|
46 |
+
def run_example(task_prompt, image):
|
47 |
+
prompt = task_prompt
|
48 |
+
# Ensure the image is in RGB mode
|
49 |
+
if image.mode != "RGB":
|
50 |
+
image = image.convert("RGB")
|
51 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
52 |
+
generated_ids = model.generate(
|
53 |
+
input_ids=inputs["input_ids"],
|
54 |
+
pixel_values=inputs["pixel_values"],
|
55 |
+
max_new_tokens=1024,
|
56 |
+
num_beams=3,
|
57 |
+
do_sample=True
|
58 |
+
)
|
59 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
60 |
+
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
61 |
+
return parsed_answer
|
62 |
+
from PIL import Image
|
63 |
+
import requests
|
64 |
+
import copy
|
65 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
66 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
67 |
+
result = run_example("<MORE_DETAILED_CAPTION>" , image)
|
68 |
+
print(result)
|
69 |
+
# {'<MORE_DETAILED_CAPTION>': 'A vivid portrayal of a classic Volkswagen Beetle parked on a cobblestone street. The car is painted a vibrant turquoise, contrasting with the muted yellow of the building behind it. The building has two wooden doors, one with a white frame and the other with a dark brown finish. The sky is clear, and the sun casts a warm glow on the scene, highlighting the car's details. The image evokes a nostalgic and nostalgic mood, capturing a moment in time without posed elements.'}
|
70 |
+
```
|
config.json
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "florence2",
|
3 |
+
"architectures": [
|
4 |
+
"Florence2ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_florence2.Florence2Config",
|
8 |
+
"AutoModelForCausalLM": "modeling_florence2.Florence2ForConditionalGeneration"
|
9 |
+
},
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"eos_token_id": 2,
|
12 |
+
"ignore_index": -100,
|
13 |
+
"model_type": "florence2",
|
14 |
+
"pad_token_id": 1,
|
15 |
+
"projection_dim": 1024,
|
16 |
+
"text_config": {
|
17 |
+
"vocab_size": 51289,
|
18 |
+
"activation_dropout": 0.1,
|
19 |
+
"activation_function": "gelu",
|
20 |
+
"add_bias_logits": false,
|
21 |
+
"add_final_layer_norm": false,
|
22 |
+
"attention_dropout": 0.1,
|
23 |
+
"bos_token_id": 0,
|
24 |
+
"classif_dropout": 0.1,
|
25 |
+
"classifier_dropout": 0.0,
|
26 |
+
"d_model": 1024,
|
27 |
+
"decoder_attention_heads": 16,
|
28 |
+
"decoder_ffn_dim": 4096,
|
29 |
+
"decoder_layerdrop": 0.0,
|
30 |
+
"decoder_layers": 12,
|
31 |
+
"decoder_start_token_id": 2,
|
32 |
+
"dropout": 0.1,
|
33 |
+
"early_stopping": true,
|
34 |
+
"encoder_attention_heads": 16,
|
35 |
+
"encoder_ffn_dim": 4096,
|
36 |
+
"encoder_layerdrop": 0.0,
|
37 |
+
"encoder_layers": 12,
|
38 |
+
"eos_token_id": 2,
|
39 |
+
"forced_eos_token_id": 2,
|
40 |
+
"forced_bos_token_id": 0,
|
41 |
+
"gradient_checkpointing": false,
|
42 |
+
"init_std": 0.02,
|
43 |
+
"is_encoder_decoder": true,
|
44 |
+
"label2id": {
|
45 |
+
"LABEL_0": 0,
|
46 |
+
"LABEL_1": 1,
|
47 |
+
"LABEL_2": 2
|
48 |
+
},
|
49 |
+
"max_position_embeddings": 1024,
|
50 |
+
"no_repeat_ngram_size": 3,
|
51 |
+
"normalize_before": false,
|
52 |
+
"num_hidden_layers": 12,
|
53 |
+
"pad_token_id": 1,
|
54 |
+
"scale_embedding": false,
|
55 |
+
"num_beams": 3
|
56 |
+
},
|
57 |
+
"vision_config": {
|
58 |
+
"model_type": "davit",
|
59 |
+
"drop_path_rate": 0.1,
|
60 |
+
"patch_size": [7, 3, 3, 3],
|
61 |
+
"patch_stride": [4, 2, 2, 2],
|
62 |
+
"patch_padding": [3, 1, 1, 1],
|
63 |
+
"patch_prenorm": [false, true, true, true],
|
64 |
+
"enable_checkpoint": false,
|
65 |
+
"dim_embed": [256, 512, 1024, 2048],
|
66 |
+
"num_heads": [8, 16, 32, 64],
|
67 |
+
"num_groups": [8, 16, 32, 64],
|
68 |
+
"depths": [1, 1, 9, 1],
|
69 |
+
"window_size": 12,
|
70 |
+
"projection_dim": 1024,
|
71 |
+
"visual_temporal_embedding": {
|
72 |
+
"type": "COSINE",
|
73 |
+
"max_temporal_embeddings": 100
|
74 |
+
},
|
75 |
+
"image_pos_embed": {
|
76 |
+
"type": "learned_abs_2d",
|
77 |
+
"max_pos_embeddings": 50
|
78 |
+
},
|
79 |
+
"image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
|
80 |
+
},
|
81 |
+
"vocab_size": 51289,
|
82 |
+
"torch_dtype": "float16",
|
83 |
+
"transformers_version": "4.41.0.dev0",
|
84 |
+
"is_encoder_decoder": true
|
85 |
+
}
|
configuration_florence2.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import warnings
|
15 |
+
""" Florence-2 configuration"""
|
16 |
+
|
17 |
+
from typing import Optional
|
18 |
+
|
19 |
+
from transformers import AutoConfig
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
class Florence2VisionConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
|
28 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
29 |
+
defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
36 |
+
The dropout rate of the drop path layer.
|
37 |
+
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
|
38 |
+
The patch size of the image.
|
39 |
+
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
|
40 |
+
The patch stride of the image.
|
41 |
+
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
|
42 |
+
The patch padding of the image.
|
43 |
+
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
|
44 |
+
Whether to apply layer normalization before the patch embedding layer.
|
45 |
+
enable_checkpoint (`bool`, *optional*, defaults to False):
|
46 |
+
Whether to enable checkpointing.
|
47 |
+
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
|
48 |
+
The dimension of the embedding layer.
|
49 |
+
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
50 |
+
The number of attention heads.
|
51 |
+
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
52 |
+
The number of groups.
|
53 |
+
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
|
54 |
+
The depth of the model.
|
55 |
+
window_size (`int`, *optional*, defaults to 12):
|
56 |
+
The window size of the model.
|
57 |
+
projection_dim (`int`, *optional*, defaults to 1024):
|
58 |
+
The dimension of the projection layer.
|
59 |
+
visual_temporal_embedding (`dict`, *optional*):
|
60 |
+
The configuration of the visual temporal embedding.
|
61 |
+
image_pos_embed (`dict`, *optional*):
|
62 |
+
The configuration of the image position embedding.
|
63 |
+
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
|
64 |
+
The source of the image feature.
|
65 |
+
Example:
|
66 |
+
|
67 |
+
```python
|
68 |
+
>>> from transformers import Florence2VisionConfig, Florence2VisionModel
|
69 |
+
|
70 |
+
>>> # Initializing a Florence2 Vision style configuration
|
71 |
+
>>> configuration = Florence2VisionConfig()
|
72 |
+
|
73 |
+
>>> # Initializing a model (with random weights)
|
74 |
+
>>> model = Florence2VisionModel(configuration)
|
75 |
+
|
76 |
+
>>> # Accessing the model configuration
|
77 |
+
>>> configuration = model.config
|
78 |
+
```"""
|
79 |
+
|
80 |
+
model_type = "florence2_vision"
|
81 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
drop_path_rate=0.1,
|
86 |
+
patch_size=[7, 3, 3, 3],
|
87 |
+
patch_stride=[4, 2, 2, 2],
|
88 |
+
patch_padding=[3, 1, 1, 1],
|
89 |
+
patch_prenorm=[False, True, True, True],
|
90 |
+
enable_checkpoint=False,
|
91 |
+
dim_embed=[256, 512, 1024, 2048],
|
92 |
+
num_heads=[8, 16, 32, 64],
|
93 |
+
num_groups=[8, 16, 32, 64],
|
94 |
+
depths=[1, 1, 9, 1],
|
95 |
+
window_size=12,
|
96 |
+
projection_dim=1024,
|
97 |
+
visual_temporal_embedding=None,
|
98 |
+
image_pos_embed=None,
|
99 |
+
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
|
100 |
+
**kwargs,
|
101 |
+
):
|
102 |
+
self.drop_path_rate = drop_path_rate
|
103 |
+
self.patch_size = patch_size
|
104 |
+
self.patch_stride = patch_stride
|
105 |
+
self.patch_padding = patch_padding
|
106 |
+
self.patch_prenorm = patch_prenorm
|
107 |
+
self.enable_checkpoint = enable_checkpoint
|
108 |
+
self.dim_embed = dim_embed
|
109 |
+
self.num_heads = num_heads
|
110 |
+
self.num_groups = num_groups
|
111 |
+
self.depths = depths
|
112 |
+
self.window_size = window_size
|
113 |
+
self.projection_dim = projection_dim
|
114 |
+
self.visual_temporal_embedding = visual_temporal_embedding
|
115 |
+
self.image_pos_embed = image_pos_embed
|
116 |
+
self.image_feature_source = image_feature_source
|
117 |
+
|
118 |
+
super().__init__(**kwargs)
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
class Florence2LanguageConfig(PretrainedConfig):
|
123 |
+
r"""
|
124 |
+
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
|
125 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
126 |
+
defaults will yield a similar configuration to that of the BART
|
127 |
+
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
|
128 |
+
|
129 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
130 |
+
documentation from [`PretrainedConfig`] for more information.
|
131 |
+
|
132 |
+
|
133 |
+
Args:
|
134 |
+
vocab_size (`int`, *optional*, defaults to 51289):
|
135 |
+
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
|
136 |
+
`inputs_ids` passed when calling [`Florence2LanguageModel`].
|
137 |
+
d_model (`int`, *optional*, defaults to 1024):
|
138 |
+
Dimensionality of the layers and the pooler layer.
|
139 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
140 |
+
Number of encoder layers.
|
141 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
142 |
+
Number of decoder layers.
|
143 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
144 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
145 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
146 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
147 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
148 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
149 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
150 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
151 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
152 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
153 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
154 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
155 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
156 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
157 |
+
The dropout ratio for the attention probabilities.
|
158 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
159 |
+
The dropout ratio for activations inside the fully connected layer.
|
160 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
161 |
+
The dropout ratio for classifier.
|
162 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
163 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
164 |
+
just in case (e.g., 512 or 1024 or 2048).
|
165 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
166 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
167 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
168 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
169 |
+
for more details.
|
170 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
171 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
172 |
+
for more details.
|
173 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
174 |
+
Scale embeddings by diving by sqrt(d_model).
|
175 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
176 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
177 |
+
num_labels (`int`, *optional*, defaults to 3):
|
178 |
+
The number of labels to use in [`Florence2LanguageForSequenceClassification`].
|
179 |
+
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
180 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
181 |
+
`eos_token_id`.
|
182 |
+
|
183 |
+
Example:
|
184 |
+
|
185 |
+
```python
|
186 |
+
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
|
187 |
+
|
188 |
+
>>> # Initializing a Florence2 Language style configuration
|
189 |
+
>>> configuration = Florence2LanguageConfig()
|
190 |
+
|
191 |
+
>>> # Initializing a model (with random weights)
|
192 |
+
>>> model = Florence2LangaugeModel(configuration)
|
193 |
+
|
194 |
+
>>> # Accessing the model configuration
|
195 |
+
>>> configuration = model.config
|
196 |
+
```"""
|
197 |
+
|
198 |
+
model_type = "florence2_language"
|
199 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
200 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
201 |
+
|
202 |
+
def __init__(
|
203 |
+
self,
|
204 |
+
vocab_size=51289,
|
205 |
+
max_position_embeddings=1024,
|
206 |
+
encoder_layers=12,
|
207 |
+
encoder_ffn_dim=4096,
|
208 |
+
encoder_attention_heads=16,
|
209 |
+
decoder_layers=12,
|
210 |
+
decoder_ffn_dim=4096,
|
211 |
+
decoder_attention_heads=16,
|
212 |
+
encoder_layerdrop=0.0,
|
213 |
+
decoder_layerdrop=0.0,
|
214 |
+
activation_function="gelu",
|
215 |
+
d_model=1024,
|
216 |
+
dropout=0.1,
|
217 |
+
attention_dropout=0.0,
|
218 |
+
activation_dropout=0.0,
|
219 |
+
init_std=0.02,
|
220 |
+
classifier_dropout=0.0,
|
221 |
+
scale_embedding=False,
|
222 |
+
use_cache=True,
|
223 |
+
num_labels=3,
|
224 |
+
pad_token_id=1,
|
225 |
+
bos_token_id=0,
|
226 |
+
eos_token_id=2,
|
227 |
+
is_encoder_decoder=True,
|
228 |
+
decoder_start_token_id=2,
|
229 |
+
forced_eos_token_id=2,
|
230 |
+
**kwargs,
|
231 |
+
):
|
232 |
+
self.vocab_size = vocab_size
|
233 |
+
self.max_position_embeddings = max_position_embeddings
|
234 |
+
self.d_model = d_model
|
235 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
236 |
+
self.encoder_layers = encoder_layers
|
237 |
+
self.encoder_attention_heads = encoder_attention_heads
|
238 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
239 |
+
self.decoder_layers = decoder_layers
|
240 |
+
self.decoder_attention_heads = decoder_attention_heads
|
241 |
+
self.dropout = dropout
|
242 |
+
self.attention_dropout = attention_dropout
|
243 |
+
self.activation_dropout = activation_dropout
|
244 |
+
self.activation_function = activation_function
|
245 |
+
self.init_std = init_std
|
246 |
+
self.encoder_layerdrop = encoder_layerdrop
|
247 |
+
self.decoder_layerdrop = decoder_layerdrop
|
248 |
+
self.classifier_dropout = classifier_dropout
|
249 |
+
self.use_cache = use_cache
|
250 |
+
self.num_hidden_layers = encoder_layers
|
251 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
252 |
+
|
253 |
+
super().__init__(
|
254 |
+
num_labels=num_labels,
|
255 |
+
pad_token_id=pad_token_id,
|
256 |
+
bos_token_id=bos_token_id,
|
257 |
+
eos_token_id=eos_token_id,
|
258 |
+
is_encoder_decoder=is_encoder_decoder,
|
259 |
+
decoder_start_token_id=decoder_start_token_id,
|
260 |
+
forced_eos_token_id=forced_eos_token_id,
|
261 |
+
**kwargs,
|
262 |
+
)
|
263 |
+
|
264 |
+
# ensure backward compatibility for BART CNN models
|
265 |
+
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
|
266 |
+
self.forced_bos_token_id = self.bos_token_id
|
267 |
+
warnings.warn(
|
268 |
+
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
|
269 |
+
"The config can simply be saved and uploaded again to be fixed."
|
270 |
+
)
|
271 |
+
|
272 |
+
class Florence2Config(PretrainedConfig):
|
273 |
+
r"""
|
274 |
+
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
|
275 |
+
Florence-2 model according to the specified arguments, defining the model architecture.
|
276 |
+
|
277 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
278 |
+
documentation from [`PretrainedConfig`] for more information.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
vision_config (`Florence2VisionConfig`, *optional*):
|
282 |
+
Custom vision config or dict
|
283 |
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
284 |
+
The config object of the text backbone.
|
285 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
286 |
+
The ignore index for the loss function.
|
287 |
+
vocab_size (`int`, *optional*, defaults to 51289):
|
288 |
+
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
|
289 |
+
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
|
290 |
+
projection_dim (`int`, *optional*, defaults to 1024):
|
291 |
+
Dimension of the multimodal projection space.
|
292 |
+
|
293 |
+
Example:
|
294 |
+
|
295 |
+
```python
|
296 |
+
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
|
297 |
+
|
298 |
+
>>> # Initializing a clip-like vision config
|
299 |
+
>>> vision_config = CLIPVisionConfig()
|
300 |
+
|
301 |
+
>>> # Initializing a Bart config
|
302 |
+
>>> text_config = BartConfig()
|
303 |
+
|
304 |
+
>>> # Initializing a Florence-2 configuration
|
305 |
+
>>> configuration = Florence2Config(vision_config, text_config)
|
306 |
+
|
307 |
+
>>> # Initializing a model from the florence-2 configuration
|
308 |
+
>>> model = Florence2ForConditionalGeneration(configuration)
|
309 |
+
|
310 |
+
>>> # Accessing the model configuration
|
311 |
+
>>> configuration = model.config
|
312 |
+
```"""
|
313 |
+
|
314 |
+
model_type = "florence2"
|
315 |
+
is_composition = False
|
316 |
+
|
317 |
+
def __init__(
|
318 |
+
self,
|
319 |
+
vision_config=None,
|
320 |
+
text_config=None,
|
321 |
+
ignore_index=-100,
|
322 |
+
vocab_size=51289,
|
323 |
+
projection_dim=1024,
|
324 |
+
**kwargs,
|
325 |
+
):
|
326 |
+
self.ignore_index = ignore_index
|
327 |
+
self.vocab_size = vocab_size
|
328 |
+
self.projection_dim = projection_dim
|
329 |
+
if vision_config is not None:
|
330 |
+
vision_config = PretrainedConfig(**vision_config)
|
331 |
+
self.vision_config = vision_config
|
332 |
+
self.vocab_size = self.vocab_size
|
333 |
+
|
334 |
+
self.text_config = text_config
|
335 |
+
if text_config is not None:
|
336 |
+
self.text_config = Florence2LanguageConfig(**text_config)
|
337 |
+
|
338 |
+
|
339 |
+
super().__init__(**kwargs)
|
340 |
+
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"num_beams": 3,
|
3 |
+
"early_stopping": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77384f40b2c67f798ca2f6ac4a8a46e969313115aff7a12842275e0017a08805
|
3 |
+
size 1646020762
|
modeling_florence2.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "microsoft/Florence-2-large--processing_florence2.Florence2Processor"
|
4 |
+
},
|
5 |
+
"crop_size": {
|
6 |
+
"height": 768,
|
7 |
+
"width": 768
|
8 |
+
},
|
9 |
+
"do_center_crop": false,
|
10 |
+
"do_convert_rgb": null,
|
11 |
+
"do_normalize": true,
|
12 |
+
"do_rescale": true,
|
13 |
+
"do_resize": true,
|
14 |
+
"image_mean": [
|
15 |
+
0.485,
|
16 |
+
0.456,
|
17 |
+
0.406
|
18 |
+
],
|
19 |
+
"image_processor_type": "CLIPImageProcessor",
|
20 |
+
"image_seq_length": 577,
|
21 |
+
"image_std": [
|
22 |
+
0.229,
|
23 |
+
0.224,
|
24 |
+
0.225
|
25 |
+
],
|
26 |
+
"processor_class": "Florence2Processor",
|
27 |
+
"resample": 3,
|
28 |
+
"rescale_factor": 0.00392156862745098,
|
29 |
+
"size": {
|
30 |
+
"height": 768,
|
31 |
+
"width": 768
|
32 |
+
}
|
33 |
+
}
|
processing_florence2.py
ADDED
@@ -0,0 +1,1088 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Florence-2.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import re
|
20 |
+
import logging
|
21 |
+
from typing import List, Optional, Union
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from transformers.feature_extraction_utils import BatchFeature
|
27 |
+
from transformers.image_utils import ImageInput, is_valid_image
|
28 |
+
from transformers.processing_utils import ProcessorMixin
|
29 |
+
from transformers.tokenization_utils_base import (
|
30 |
+
PaddingStrategy,
|
31 |
+
PreTokenizedInput,
|
32 |
+
TextInput,
|
33 |
+
TruncationStrategy,
|
34 |
+
)
|
35 |
+
from transformers.utils import TensorType
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_url
|
41 |
+
def is_url(val) -> bool:
|
42 |
+
return isinstance(val, str) and val.startswith("http")
|
43 |
+
|
44 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
|
45 |
+
def is_image_or_image_url(elem):
|
46 |
+
return is_url(elem) or is_valid_image(elem)
|
47 |
+
|
48 |
+
|
49 |
+
def _is_str_or_image(elem):
|
50 |
+
return isinstance(elem, (str)) or is_image_or_image_url(elem)
|
51 |
+
|
52 |
+
|
53 |
+
class Florence2Processor(ProcessorMixin):
|
54 |
+
r"""
|
55 |
+
Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
|
56 |
+
|
57 |
+
[`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
|
58 |
+
[`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
image_processor ([`CLIPImageProcessor`], *optional*):
|
62 |
+
The image processor is a required input.
|
63 |
+
tokenizer ([`BartTokenizerFast`], *optional*):
|
64 |
+
The tokenizer is a required input.
|
65 |
+
"""
|
66 |
+
|
67 |
+
attributes = ["image_processor", "tokenizer"]
|
68 |
+
image_processor_class = "CLIPImageProcessor"
|
69 |
+
tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
image_processor=None,
|
74 |
+
tokenizer=None,
|
75 |
+
):
|
76 |
+
if image_processor is None:
|
77 |
+
raise ValueError("You need to specify an `image_processor`.")
|
78 |
+
if tokenizer is None:
|
79 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
80 |
+
if not hasattr(image_processor, "image_seq_length"):
|
81 |
+
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
|
82 |
+
|
83 |
+
self.image_seq_length = image_processor.image_seq_length
|
84 |
+
|
85 |
+
tokens_to_add = {
|
86 |
+
'additional_special_tokens': \
|
87 |
+
tokenizer.additional_special_tokens + \
|
88 |
+
['<od>', '</od>', '<ocr>', '</ocr>'] + \
|
89 |
+
[f'<loc_{x}>' for x in range(1000)] + \
|
90 |
+
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
|
91 |
+
}
|
92 |
+
tokenizer.add_special_tokens(tokens_to_add)
|
93 |
+
|
94 |
+
self.tasks_answer_post_processing_type = {
|
95 |
+
'<OCR>': 'pure_text',
|
96 |
+
'<OCR_WITH_REGION>': 'ocr',
|
97 |
+
'<CAPTION>': 'pure_text',
|
98 |
+
'<DETAILED_CAPTION>': 'pure_text',
|
99 |
+
'<MORE_DETAILED_CAPTION>': 'pure_text',
|
100 |
+
'<OD>': 'description_with_bboxes',
|
101 |
+
'<DENSE_REGION_CAPTION>': 'description_with_bboxes',
|
102 |
+
'<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
|
103 |
+
'<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
|
104 |
+
'<REGION_TO_SEGMENTATION>': 'polygons',
|
105 |
+
'<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
|
106 |
+
'<REGION_TO_CATEGORY>': 'pure_text',
|
107 |
+
'<REGION_TO_DESCRIPTION>': 'pure_text',
|
108 |
+
'<REGION_TO_OCR>': 'pure_text',
|
109 |
+
'<REGION_PROPOSAL>': 'bboxes'
|
110 |
+
}
|
111 |
+
|
112 |
+
self.task_prompts_without_inputs = {
|
113 |
+
'<OCR>': 'What is the text in the image?',
|
114 |
+
'<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
|
115 |
+
'<CAPTION>': 'What does the image describe?',
|
116 |
+
'<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
|
117 |
+
'<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
|
118 |
+
'<OD>': 'Locate the objects with category name in the image.',
|
119 |
+
'<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
|
120 |
+
'<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
|
121 |
+
}
|
122 |
+
|
123 |
+
self.task_prompts_with_input = {
|
124 |
+
'<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
|
125 |
+
'<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
|
126 |
+
'<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
|
127 |
+
'<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
|
128 |
+
'<REGION_TO_CATEGORY>': 'What is the region {input}?',
|
129 |
+
'<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
|
130 |
+
'<REGION_TO_OCR>': 'What text is in the region {input}?',
|
131 |
+
}
|
132 |
+
|
133 |
+
self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
|
134 |
+
|
135 |
+
|
136 |
+
super().__init__(image_processor, tokenizer)
|
137 |
+
|
138 |
+
def _construct_prompts(self, text):
|
139 |
+
# replace the task tokens with the task prompts if task token is in the text
|
140 |
+
prompts = []
|
141 |
+
for _text in text:
|
142 |
+
# 1. fixed task prompts without additional inputs
|
143 |
+
for task_token, task_prompt in self.task_prompts_without_inputs.items():
|
144 |
+
if task_token in _text:
|
145 |
+
assert _text == task_token, f"Task token {task_token} should be the only token in the text."
|
146 |
+
_text = task_prompt
|
147 |
+
break
|
148 |
+
# 2. task prompts with additional inputs
|
149 |
+
for task_token, task_prompt in self.task_prompts_with_input.items():
|
150 |
+
if task_token in _text:
|
151 |
+
_text = task_prompt.format(input=_text.replace(task_token, ''))
|
152 |
+
break
|
153 |
+
prompts.append(_text)
|
154 |
+
return prompts
|
155 |
+
|
156 |
+
def __call__(
|
157 |
+
self,
|
158 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
159 |
+
images: ImageInput = None,
|
160 |
+
tokenize_newline_separately: bool = True,
|
161 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
162 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
163 |
+
max_length=None,
|
164 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
165 |
+
do_resize: bool = None,
|
166 |
+
do_normalize: bool = None,
|
167 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
168 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
169 |
+
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
|
170 |
+
input_data_format: Optional[
|
171 |
+
Union[str, "ChannelDimension"] # noqa: F821
|
172 |
+
] = None,
|
173 |
+
resample: "PILImageResampling" = None, # noqa: F821
|
174 |
+
do_convert_rgb: bool = None,
|
175 |
+
do_thumbnail: bool = None,
|
176 |
+
do_align_long_axis: bool = None,
|
177 |
+
do_rescale: bool = None,
|
178 |
+
) -> BatchFeature:
|
179 |
+
"""
|
180 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
181 |
+
and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
|
182 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
183 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
184 |
+
of the above two methods for more information.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
188 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
189 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
190 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
191 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
192 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
193 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
194 |
+
number of channels, H and W are image height and width.
|
195 |
+
tokenize_newline_separately (`bool`, defaults to `True`):
|
196 |
+
Adds a separately tokenized '\n' at the end of the prompt.
|
197 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
198 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
199 |
+
index) among:
|
200 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
201 |
+
sequence if provided).
|
202 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
203 |
+
acceptable input length for the model if that argument is not provided.
|
204 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
205 |
+
lengths).
|
206 |
+
max_length (`int`, *optional*):
|
207 |
+
Maximum length of the returned list and optionally padding length (see above).
|
208 |
+
truncation (`bool`, *optional*):
|
209 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
210 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
211 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
212 |
+
|
213 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
214 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
215 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
216 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
220 |
+
|
221 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
|
222 |
+
is provided, the `input_ids` will also contain the suffix input ids.
|
223 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
224 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
225 |
+
`None`).
|
226 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
227 |
+
- **labels** -- Labels compatible with training if `suffix` is not None
|
228 |
+
"""
|
229 |
+
|
230 |
+
return_token_type_ids = False
|
231 |
+
|
232 |
+
if images is None:
|
233 |
+
raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
|
234 |
+
if text is None:
|
235 |
+
logger.warning_once(
|
236 |
+
"You are using Florence-2 without a text prompt."
|
237 |
+
)
|
238 |
+
text = ""
|
239 |
+
|
240 |
+
if isinstance(text, List) and isinstance(images, List):
|
241 |
+
if len(images) < len(text):
|
242 |
+
raise ValueError(
|
243 |
+
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
|
244 |
+
)
|
245 |
+
if _is_str_or_image(text):
|
246 |
+
text = [text]
|
247 |
+
elif isinstance(text, list) and _is_str_or_image(text[0]):
|
248 |
+
pass
|
249 |
+
|
250 |
+
pixel_values = self.image_processor(
|
251 |
+
images,
|
252 |
+
do_resize=do_resize,
|
253 |
+
do_normalize=do_normalize,
|
254 |
+
return_tensors=return_tensors,
|
255 |
+
image_mean=image_mean,
|
256 |
+
image_std=image_std,
|
257 |
+
input_data_format=input_data_format,
|
258 |
+
data_format=data_format,
|
259 |
+
resample=resample,
|
260 |
+
do_convert_rgb=do_convert_rgb,
|
261 |
+
)["pixel_values"]
|
262 |
+
|
263 |
+
if max_length is not None:
|
264 |
+
max_length -= self.image_seq_length # max_length has to account for the image tokens
|
265 |
+
|
266 |
+
text = self._construct_prompts(text)
|
267 |
+
|
268 |
+
inputs = self.tokenizer(
|
269 |
+
text,
|
270 |
+
return_tensors=return_tensors,
|
271 |
+
padding=padding,
|
272 |
+
max_length=max_length,
|
273 |
+
truncation=truncation,
|
274 |
+
return_token_type_ids=return_token_type_ids,
|
275 |
+
)
|
276 |
+
|
277 |
+
return_data = {**inputs, "pixel_values": pixel_values}
|
278 |
+
|
279 |
+
if return_token_type_ids:
|
280 |
+
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
|
281 |
+
return_data.update({"labels": labels})
|
282 |
+
return BatchFeature(data=return_data)
|
283 |
+
|
284 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
|
285 |
+
def batch_decode(self, *args, **kwargs):
|
286 |
+
"""
|
287 |
+
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
288 |
+
refer to the docstring of this method for more information.
|
289 |
+
"""
|
290 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
291 |
+
|
292 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
|
293 |
+
def decode(self, *args, **kwargs):
|
294 |
+
"""
|
295 |
+
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
296 |
+
the docstring of this method for more information.
|
297 |
+
"""
|
298 |
+
return self.tokenizer.decode(*args, **kwargs)
|
299 |
+
|
300 |
+
@property
|
301 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
|
302 |
+
def model_input_names(self):
|
303 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
304 |
+
image_processor_input_names = self.image_processor.model_input_names
|
305 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
306 |
+
|
307 |
+
def post_process_generation(self, text, task, image_size):
|
308 |
+
"""
|
309 |
+
Post-process the output of the model to each of the task outputs.
|
310 |
+
|
311 |
+
Args:
|
312 |
+
text (`str`): The text to post-process.
|
313 |
+
task (`str`): The task to post-process the text for.
|
314 |
+
image_size (`Tuple[int, int]`): The size of the image. height x width.
|
315 |
+
"""
|
316 |
+
|
317 |
+
task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
|
318 |
+
task_answer = self.post_processor(
|
319 |
+
text=text,
|
320 |
+
image_size=image_size,
|
321 |
+
parse_tasks=task_answer_post_processing_type,
|
322 |
+
)[task_answer_post_processing_type]
|
323 |
+
|
324 |
+
if task_answer_post_processing_type == 'pure_text':
|
325 |
+
final_answer = task_answer
|
326 |
+
# remove the special tokens
|
327 |
+
final_answer = final_answer.replace('<s>', '').replace('</s>', '')
|
328 |
+
elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
|
329 |
+
od_instances = task_answer
|
330 |
+
bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
|
331 |
+
labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
|
332 |
+
final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
|
333 |
+
elif task_answer_post_processing_type in ['ocr']:
|
334 |
+
bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
|
335 |
+
labels = [str(_od_instance['text']) for _od_instance in task_answer]
|
336 |
+
final_answer = {'quad_boxes': bboxes, 'labels': labels}
|
337 |
+
elif task_answer_post_processing_type in ['phrase_grounding']:
|
338 |
+
bboxes = []
|
339 |
+
labels = []
|
340 |
+
for _grounded_phrase in task_answer:
|
341 |
+
for _bbox in _grounded_phrase['bbox']:
|
342 |
+
bboxes.append(_bbox)
|
343 |
+
labels.append(_grounded_phrase['cat_name'])
|
344 |
+
final_answer = {'bboxes': bboxes, 'labels': labels}
|
345 |
+
elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
|
346 |
+
labels = []
|
347 |
+
polygons = []
|
348 |
+
for result in task_answer:
|
349 |
+
label = result['cat_name']
|
350 |
+
_polygons = result['polygons']
|
351 |
+
labels.append(label)
|
352 |
+
polygons.append(_polygons)
|
353 |
+
final_answer = {'polygons': polygons, 'labels': labels}
|
354 |
+
elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
|
355 |
+
bboxes = []
|
356 |
+
bboxes_labels = []
|
357 |
+
polygons = []
|
358 |
+
polygons_labels = []
|
359 |
+
for result in task_answer:
|
360 |
+
label = result['cat_name']
|
361 |
+
if 'polygons' in result:
|
362 |
+
_polygons = result['polygons']
|
363 |
+
polygons.append(_polygons)
|
364 |
+
polygons_labels.append(label)
|
365 |
+
else:
|
366 |
+
_bbox = result['bbox']
|
367 |
+
bboxes.append(_bbox)
|
368 |
+
bboxes_labels.append(label)
|
369 |
+
final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
|
370 |
+
else:
|
371 |
+
raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
|
372 |
+
|
373 |
+
final_answer = {
|
374 |
+
task: final_answer}
|
375 |
+
return final_answer
|
376 |
+
|
377 |
+
class BoxQuantizer(object):
|
378 |
+
def __init__(self, mode, bins):
|
379 |
+
self.mode = mode
|
380 |
+
self.bins = bins
|
381 |
+
|
382 |
+
def quantize(self, boxes: torch.Tensor, size):
|
383 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
384 |
+
size_w, size_h = size # Original image size.
|
385 |
+
size_per_bin_w = size_w / bins_w
|
386 |
+
size_per_bin_h = size_h / bins_h
|
387 |
+
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
388 |
+
|
389 |
+
if self.mode == 'floor':
|
390 |
+
quantized_xmin = (
|
391 |
+
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
392 |
+
quantized_ymin = (
|
393 |
+
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
394 |
+
quantized_xmax = (
|
395 |
+
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
396 |
+
quantized_ymax = (
|
397 |
+
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
398 |
+
|
399 |
+
elif self.mode == 'round':
|
400 |
+
raise NotImplementedError()
|
401 |
+
|
402 |
+
else:
|
403 |
+
raise ValueError('Incorrect quantization type.')
|
404 |
+
|
405 |
+
quantized_boxes = torch.cat(
|
406 |
+
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
|
407 |
+
).int()
|
408 |
+
|
409 |
+
return quantized_boxes
|
410 |
+
|
411 |
+
def dequantize(self, boxes: torch.Tensor, size):
|
412 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
413 |
+
size_w, size_h = size # Original image size.
|
414 |
+
size_per_bin_w = size_w / bins_w
|
415 |
+
size_per_bin_h = size_h / bins_h
|
416 |
+
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
417 |
+
|
418 |
+
if self.mode == 'floor':
|
419 |
+
# Add 0.5 to use the center position of the bin as the coordinate.
|
420 |
+
dequantized_xmin = (xmin + 0.5) * size_per_bin_w
|
421 |
+
dequantized_ymin = (ymin + 0.5) * size_per_bin_h
|
422 |
+
dequantized_xmax = (xmax + 0.5) * size_per_bin_w
|
423 |
+
dequantized_ymax = (ymax + 0.5) * size_per_bin_h
|
424 |
+
|
425 |
+
elif self.mode == 'round':
|
426 |
+
raise NotImplementedError()
|
427 |
+
|
428 |
+
else:
|
429 |
+
raise ValueError('Incorrect quantization type.')
|
430 |
+
|
431 |
+
dequantized_boxes = torch.cat(
|
432 |
+
(dequantized_xmin, dequantized_ymin,
|
433 |
+
dequantized_xmax, dequantized_ymax), dim=-1
|
434 |
+
)
|
435 |
+
|
436 |
+
return dequantized_boxes
|
437 |
+
|
438 |
+
|
439 |
+
class CoordinatesQuantizer(object):
|
440 |
+
"""
|
441 |
+
Quantize coornidates (Nx2)
|
442 |
+
"""
|
443 |
+
|
444 |
+
def __init__(self, mode, bins):
|
445 |
+
self.mode = mode
|
446 |
+
self.bins = bins
|
447 |
+
|
448 |
+
def quantize(self, coordinates: torch.Tensor, size):
|
449 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
450 |
+
size_w, size_h = size # Original image size.
|
451 |
+
size_per_bin_w = size_w / bins_w
|
452 |
+
size_per_bin_h = size_h / bins_h
|
453 |
+
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
454 |
+
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
455 |
+
|
456 |
+
if self.mode == 'floor':
|
457 |
+
quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
458 |
+
quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
459 |
+
|
460 |
+
elif self.mode == 'round':
|
461 |
+
raise NotImplementedError()
|
462 |
+
|
463 |
+
else:
|
464 |
+
raise ValueError('Incorrect quantization type.')
|
465 |
+
|
466 |
+
quantized_coordinates = torch.cat(
|
467 |
+
(quantized_x, quantized_y), dim=-1
|
468 |
+
).int()
|
469 |
+
|
470 |
+
return quantized_coordinates
|
471 |
+
|
472 |
+
def dequantize(self, coordinates: torch.Tensor, size):
|
473 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
474 |
+
size_w, size_h = size # Original image size.
|
475 |
+
size_per_bin_w = size_w / bins_w
|
476 |
+
size_per_bin_h = size_h / bins_h
|
477 |
+
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
478 |
+
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
479 |
+
|
480 |
+
if self.mode == 'floor':
|
481 |
+
# Add 0.5 to use the center position of the bin as the coordinate.
|
482 |
+
dequantized_x = (x + 0.5) * size_per_bin_w
|
483 |
+
dequantized_y = (y + 0.5) * size_per_bin_h
|
484 |
+
|
485 |
+
elif self.mode == 'round':
|
486 |
+
raise NotImplementedError()
|
487 |
+
|
488 |
+
else:
|
489 |
+
raise ValueError('Incorrect quantization type.')
|
490 |
+
|
491 |
+
dequantized_coordinates = torch.cat(
|
492 |
+
(dequantized_x, dequantized_y), dim=-1
|
493 |
+
)
|
494 |
+
|
495 |
+
return dequantized_coordinates
|
496 |
+
|
497 |
+
|
498 |
+
class Florence2PostProcesser(object):
|
499 |
+
r"""
|
500 |
+
Florence-2 post process for converting text prediction to various tasks results.
|
501 |
+
|
502 |
+
Args:
|
503 |
+
config: A dict of configs.
|
504 |
+
tokenizer: A tokenizer for decoding text to spans.
|
505 |
+
sample config:
|
506 |
+
UNIFIED_POST_PROCESS:
|
507 |
+
# commom configs
|
508 |
+
NUM_BBOX_HEIGHT_BINS: 1000
|
509 |
+
NUM_BBOX_WIDTH_BINS: 1000
|
510 |
+
COORDINATES_HEIGHT_BINS: 1000
|
511 |
+
COORDINATES_WIDTH_BINS: 1000
|
512 |
+
# task specific configs, override the common configs
|
513 |
+
PRASE_TASKS:
|
514 |
+
- TASK_NAME: 'video_dense_caption'
|
515 |
+
PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
|
516 |
+
SCORE_MODE: 'avg_cat_name_scores'
|
517 |
+
NUM_BINS: 100
|
518 |
+
- TASK_NAME: 'od'
|
519 |
+
PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
|
520 |
+
SCORE_MODE: 'avg_cat_name_scores'
|
521 |
+
|
522 |
+
Returns:
|
523 |
+
parsed_dict (dict): A dict of parsed results.
|
524 |
+
"""
|
525 |
+
def __init__(
|
526 |
+
self,
|
527 |
+
tokenizer=None
|
528 |
+
):
|
529 |
+
parse_tasks = []
|
530 |
+
parse_task_configs = {}
|
531 |
+
config = self._create_default_config()
|
532 |
+
for task in config['PARSE_TASKS']:
|
533 |
+
parse_tasks.append(task['TASK_NAME'])
|
534 |
+
parse_task_configs[task['TASK_NAME']] = task
|
535 |
+
|
536 |
+
self.config = config
|
537 |
+
self.parse_tasks = parse_tasks
|
538 |
+
self.parse_tasks_configs = parse_task_configs
|
539 |
+
|
540 |
+
self.tokenizer = tokenizer
|
541 |
+
if self.tokenizer is not None:
|
542 |
+
self.all_special_tokens = set(self.tokenizer.all_special_tokens)
|
543 |
+
|
544 |
+
self.init_quantizers()
|
545 |
+
self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
|
546 |
+
|
547 |
+
def _create_black_list_of_phrase_grounding(self):
|
548 |
+
black_list = {}
|
549 |
+
|
550 |
+
if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
|
551 |
+
black_list = set(
|
552 |
+
['it', 'I', 'me', 'mine',
|
553 |
+
'you', 'your', 'yours',
|
554 |
+
'he', 'him', 'his',
|
555 |
+
'she', 'her', 'hers',
|
556 |
+
'they', 'them', 'their', 'theirs',
|
557 |
+
'one', 'oneself',
|
558 |
+
'we', 'us', 'our', 'ours',
|
559 |
+
'you', 'your', 'yours',
|
560 |
+
'they', 'them', 'their', 'theirs',
|
561 |
+
'mine', 'yours', 'his', 'hers', 'its',
|
562 |
+
'ours', 'yours', 'theirs',
|
563 |
+
'myself', 'yourself', 'himself', 'herself', 'itself',
|
564 |
+
'ourselves', 'yourselves', 'themselves',
|
565 |
+
'this', 'that',
|
566 |
+
'these', 'those',
|
567 |
+
'who', 'whom', 'whose', 'which', 'what',
|
568 |
+
'who', 'whom', 'whose', 'which', 'that',
|
569 |
+
'all', 'another', 'any', 'anybody', 'anyone', 'anything',
|
570 |
+
'each', 'everybody', 'everyone', 'everything',
|
571 |
+
'few', 'many', 'nobody', 'none', 'one', 'several',
|
572 |
+
'some', 'somebody', 'someone', 'something',
|
573 |
+
'each other', 'one another',
|
574 |
+
'myself', 'yourself', 'himself', 'herself', 'itself',
|
575 |
+
'ourselves', 'yourselves', 'themselves',
|
576 |
+
'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
|
577 |
+
'other objects', 'lots', 'a set',
|
578 |
+
]
|
579 |
+
)
|
580 |
+
|
581 |
+
return black_list
|
582 |
+
|
583 |
+
def _create_default_config(self):
|
584 |
+
config = {
|
585 |
+
'NUM_BBOX_HEIGHT_BINS': 1000,
|
586 |
+
'NUM_BBOX_WIDTH_BINS': 1000,
|
587 |
+
'BOX_QUANTIZATION_MODE': 'floor',
|
588 |
+
'COORDINATES_HEIGHT_BINS': 1000,
|
589 |
+
'COORDINATES_WIDTH_BINS': 1000,
|
590 |
+
'COORDINATES_QUANTIZATION_MODE': 'floor',
|
591 |
+
'PARSE_TASKS': [
|
592 |
+
{
|
593 |
+
'TASK_NAME': 'od',
|
594 |
+
'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>'
|
595 |
+
},
|
596 |
+
{
|
597 |
+
'TASK_NAME': 'ocr',
|
598 |
+
'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
|
599 |
+
'AREA_THRESHOLD': 0.00
|
600 |
+
},
|
601 |
+
{
|
602 |
+
'TASK_NAME': 'phrase_grounding',
|
603 |
+
'FILTER_BY_BLACK_LIST': True
|
604 |
+
},
|
605 |
+
{
|
606 |
+
'TASK_NAME': 'pure_text',
|
607 |
+
},
|
608 |
+
{
|
609 |
+
'TASK_NAME': 'description_with_bboxes',
|
610 |
+
},
|
611 |
+
{
|
612 |
+
'TASK_NAME': 'description_with_polygons',
|
613 |
+
},
|
614 |
+
{
|
615 |
+
'TASK_NAME': 'polygons',
|
616 |
+
},
|
617 |
+
{
|
618 |
+
'TASK_NAME': 'bboxes',
|
619 |
+
},
|
620 |
+
{
|
621 |
+
'TASK_NAME': 'description_with_bboxes_or_polygons',
|
622 |
+
}
|
623 |
+
]
|
624 |
+
}
|
625 |
+
|
626 |
+
return config
|
627 |
+
|
628 |
+
def init_quantizers(self):
|
629 |
+
# we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
|
630 |
+
num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
631 |
+
num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
632 |
+
box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
633 |
+
self.box_quantizer = BoxQuantizer(
|
634 |
+
box_quantization_mode,
|
635 |
+
(num_bbox_width_bins, num_bbox_height_bins),
|
636 |
+
)
|
637 |
+
|
638 |
+
num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
639 |
+
num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
640 |
+
box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
641 |
+
self.coordinates_quantizer = CoordinatesQuantizer(
|
642 |
+
box_quantization_mode,
|
643 |
+
(num_bbox_width_bins, num_bbox_height_bins),
|
644 |
+
)
|
645 |
+
|
646 |
+
def decode_with_spans(self, tokenizer, token_ids):
|
647 |
+
filtered_tokens = tokenizer.convert_ids_to_tokens(
|
648 |
+
token_ids, skip_special_tokens=False)
|
649 |
+
assert len(filtered_tokens) == len(token_ids)
|
650 |
+
|
651 |
+
# To avoid mixing byte-level and unicode for byte-level BPT
|
652 |
+
# we need to build string separately for added tokens and byte-level tokens
|
653 |
+
# cf. https://github.com/huggingface/transformers/issues/1133
|
654 |
+
sub_texts = []
|
655 |
+
for token in filtered_tokens:
|
656 |
+
if token in self.all_special_tokens:
|
657 |
+
sub_texts.append(token)
|
658 |
+
else:
|
659 |
+
if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
|
660 |
+
sub_text = tokenizer.convert_tokens_to_string([token])
|
661 |
+
elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)):
|
662 |
+
# Ref: https://github.com/google/sentencepiece#whitespace-is-treated-as-a-basic-symbol
|
663 |
+
# Note: Do not strip sub_text as it may have functional whitespace
|
664 |
+
sub_text = token.replace('▁', ' ')
|
665 |
+
else:
|
666 |
+
raise ValueError(f'type {type(tokenizer)} not supported')
|
667 |
+
sub_texts.append(sub_text)
|
668 |
+
|
669 |
+
text = ''
|
670 |
+
spans = []
|
671 |
+
for sub_text in sub_texts:
|
672 |
+
span = (len(text), len(text) + len(sub_text)) # [start index, end index).
|
673 |
+
text += sub_text
|
674 |
+
spans.append(span)
|
675 |
+
|
676 |
+
# Text format:
|
677 |
+
# 1. T5Tokenizer/T5TokenizerFast:
|
678 |
+
# "<loc_1><loc_2><loc_3><loc_4> transplanting dog<loc_1><loc_2><loc_3><loc_4> cat</s>"
|
679 |
+
# Equivalent to t5_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
680 |
+
# 2. BartTokenizer (need to double check):
|
681 |
+
# "<s><loc_1><loc_2><loc_3><loc_4>transplanting dog<loc_1><loc_2><loc_3><loc_4>cat</s>"
|
682 |
+
# Equivalent to bart_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
683 |
+
return text, spans
|
684 |
+
|
685 |
+
def parse_od_from_text_and_spans(
|
686 |
+
self,
|
687 |
+
text,
|
688 |
+
pattern,
|
689 |
+
image_size,
|
690 |
+
phrase_centric=False
|
691 |
+
):
|
692 |
+
parsed = list(re.finditer(pattern, text))
|
693 |
+
|
694 |
+
instances = []
|
695 |
+
for i in range(len(parsed)):
|
696 |
+
# Prepare instance.
|
697 |
+
instance = {}
|
698 |
+
|
699 |
+
if phrase_centric:
|
700 |
+
bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
|
701 |
+
else:
|
702 |
+
bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
|
703 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
704 |
+
boxes=torch.tensor(bbox_bins),
|
705 |
+
size=image_size
|
706 |
+
).tolist()
|
707 |
+
|
708 |
+
if phrase_centric:
|
709 |
+
instance['cat_name'] = parsed[i].group(1).lower().strip()
|
710 |
+
else:
|
711 |
+
instance['cat_name'] = parsed[i].group(5).lower().strip()
|
712 |
+
instances.append(instance)
|
713 |
+
|
714 |
+
return instances
|
715 |
+
|
716 |
+
def parse_ocr_from_text_and_spans(self,
|
717 |
+
text,
|
718 |
+
pattern,
|
719 |
+
image_size,
|
720 |
+
area_threshold=-1.0,
|
721 |
+
):
|
722 |
+
bboxes = []
|
723 |
+
labels = []
|
724 |
+
text = text.replace('<s>', '')
|
725 |
+
# ocr with regions
|
726 |
+
parsed = re.findall(pattern, text)
|
727 |
+
instances = []
|
728 |
+
image_width, image_height = image_size
|
729 |
+
|
730 |
+
for ocr_line in parsed:
|
731 |
+
ocr_content = ocr_line[0]
|
732 |
+
quad_box = ocr_line[1:]
|
733 |
+
quad_box = [int(i) for i in quad_box]
|
734 |
+
quad_box = self.coordinates_quantizer.dequantize(
|
735 |
+
torch.tensor(np.array(quad_box).reshape(-1, 2)),
|
736 |
+
size=image_size
|
737 |
+
).reshape(-1).tolist()
|
738 |
+
|
739 |
+
if area_threshold > 0:
|
740 |
+
x_coords = [i for i in quad_box[0::2]]
|
741 |
+
y_coords = [i for i in quad_box[1::2]]
|
742 |
+
|
743 |
+
# apply the Shoelace formula
|
744 |
+
area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
|
745 |
+
|
746 |
+
if area < (image_width * image_height) * area_threshold:
|
747 |
+
continue
|
748 |
+
|
749 |
+
bboxes.append(quad_box)
|
750 |
+
labels.append(ocr_content)
|
751 |
+
instances.append({
|
752 |
+
'quad_box': quad_box,
|
753 |
+
'text': ocr_content,
|
754 |
+
})
|
755 |
+
return instances
|
756 |
+
|
757 |
+
def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
|
758 |
+
# ignore <s> </s> and <pad>
|
759 |
+
cur_span = 0
|
760 |
+
if text.startswith('<s>'):
|
761 |
+
cur_span += 3
|
762 |
+
|
763 |
+
text = text.replace('<s>', '')
|
764 |
+
text = text.replace('</s>', '')
|
765 |
+
text = text.replace('<pad>', '')
|
766 |
+
|
767 |
+
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
768 |
+
phrases = re.findall(pattern, text)
|
769 |
+
|
770 |
+
# pattern should be text pattern and od pattern
|
771 |
+
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
772 |
+
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
773 |
+
|
774 |
+
instances = []
|
775 |
+
for pharse_text in phrases:
|
776 |
+
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
777 |
+
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
778 |
+
|
779 |
+
if phrase_text_strip == '':
|
780 |
+
cur_span += len(pharse_text)
|
781 |
+
continue
|
782 |
+
|
783 |
+
# Prepare instance.
|
784 |
+
instance = {}
|
785 |
+
|
786 |
+
# parse phrase, get string
|
787 |
+
phrase = re.search(pattern, phrase_text_strip)
|
788 |
+
if phrase is None:
|
789 |
+
cur_span += len(pharse_text)
|
790 |
+
continue
|
791 |
+
|
792 |
+
# parse bboxes by box_pattern
|
793 |
+
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
794 |
+
if len(bboxes_parsed) == 0:
|
795 |
+
cur_span += len(pharse_text)
|
796 |
+
continue
|
797 |
+
|
798 |
+
phrase = phrase.group()
|
799 |
+
# remove leading and trailing spaces
|
800 |
+
phrase = phrase.strip()
|
801 |
+
|
802 |
+
if phrase in self.black_list_of_phrase_grounding:
|
803 |
+
cur_span += len(pharse_text)
|
804 |
+
continue
|
805 |
+
|
806 |
+
# a list of list
|
807 |
+
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
808 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
809 |
+
boxes=torch.tensor(bbox_bins),
|
810 |
+
size=image_size
|
811 |
+
).tolist()
|
812 |
+
|
813 |
+
# exclude non-ascii characters
|
814 |
+
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
815 |
+
instance['cat_name'] = phrase
|
816 |
+
|
817 |
+
instances.append(instance)
|
818 |
+
|
819 |
+
return instances
|
820 |
+
|
821 |
+
def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False):
|
822 |
+
# temporary parse solution, split by '.'
|
823 |
+
# ignore <s> </s> and <pad>
|
824 |
+
|
825 |
+
text = text.replace('<s>', '')
|
826 |
+
text = text.replace('</s>', '')
|
827 |
+
text = text.replace('<pad>', '')
|
828 |
+
|
829 |
+
if allow_empty_phrase:
|
830 |
+
pattern = rf"(?:(?:<loc_\d+>){{4,}})"
|
831 |
+
else:
|
832 |
+
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
833 |
+
phrases = re.findall(pattern, text)
|
834 |
+
|
835 |
+
# pattern should be text pattern and od pattern
|
836 |
+
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
837 |
+
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
838 |
+
|
839 |
+
instances = []
|
840 |
+
for pharse_text in phrases:
|
841 |
+
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
842 |
+
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
843 |
+
|
844 |
+
if phrase_text_strip == '' and not allow_empty_phrase:
|
845 |
+
continue
|
846 |
+
|
847 |
+
# parse phrase, get string
|
848 |
+
phrase = re.search(pattern, phrase_text_strip)
|
849 |
+
if phrase is None:
|
850 |
+
continue
|
851 |
+
|
852 |
+
phrase = phrase.group()
|
853 |
+
# remove leading and trailing spaces
|
854 |
+
phrase = phrase.strip()
|
855 |
+
|
856 |
+
# parse bboxes by box_pattern
|
857 |
+
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
858 |
+
if len(bboxes_parsed) == 0:
|
859 |
+
continue
|
860 |
+
|
861 |
+
# a list of list
|
862 |
+
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
863 |
+
|
864 |
+
bboxes = self.box_quantizer.dequantize(
|
865 |
+
boxes=torch.tensor(bbox_bins),
|
866 |
+
size=image_size
|
867 |
+
).tolist()
|
868 |
+
|
869 |
+
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
870 |
+
for _bboxes in bboxes:
|
871 |
+
# Prepare instance.
|
872 |
+
instance = {}
|
873 |
+
instance['bbox'] = _bboxes
|
874 |
+
# exclude non-ascii characters
|
875 |
+
instance['cat_name'] = phrase
|
876 |
+
instances.append(instance)
|
877 |
+
|
878 |
+
return instances
|
879 |
+
|
880 |
+
def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
|
881 |
+
allow_empty_phrase=False,
|
882 |
+
polygon_sep_token='<sep>',
|
883 |
+
polygon_start_token='<poly>',
|
884 |
+
polygon_end_token='</poly>',
|
885 |
+
with_box_at_start=False,
|
886 |
+
):
|
887 |
+
|
888 |
+
# ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
|
889 |
+
# ignore <s> </s> and <pad>
|
890 |
+
|
891 |
+
text = text.replace('<s>', '')
|
892 |
+
text = text.replace('</s>', '')
|
893 |
+
text = text.replace('<pad>', '')
|
894 |
+
|
895 |
+
if allow_empty_phrase:
|
896 |
+
pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
897 |
+
else:
|
898 |
+
# [^<]+: This part matches one or more characters that are not the < symbol.
|
899 |
+
# The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
|
900 |
+
#
|
901 |
+
pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
902 |
+
phrases = re.findall(pattern, text)
|
903 |
+
|
904 |
+
phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
|
905 |
+
box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
|
906 |
+
|
907 |
+
# one polygons instance is separated by polygon_start_token and polygon_end_token
|
908 |
+
polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
|
909 |
+
|
910 |
+
instances = []
|
911 |
+
for phrase_text in phrases:
|
912 |
+
|
913 |
+
# exclude loc_\d+>
|
914 |
+
# need to get span if want to include category score
|
915 |
+
phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
|
916 |
+
|
917 |
+
# phrase = phrase.replace('<poly>', '')
|
918 |
+
# phrase = phrase.replace('poly>', '')
|
919 |
+
|
920 |
+
if phrase_text_strip == '' and not allow_empty_phrase:
|
921 |
+
continue
|
922 |
+
|
923 |
+
|
924 |
+
# parse phrase, get string
|
925 |
+
phrase = re.search(phrase_string_pattern, phrase_text_strip)
|
926 |
+
if phrase is None:
|
927 |
+
continue
|
928 |
+
phrase = phrase.group()
|
929 |
+
# remove leading and trailing spaces
|
930 |
+
phrase = phrase.strip()
|
931 |
+
|
932 |
+
# parse bboxes by box_pattern
|
933 |
+
|
934 |
+
# split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
|
935 |
+
if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
|
936 |
+
polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
|
937 |
+
else:
|
938 |
+
polygons_instances_parsed = [phrase_text]
|
939 |
+
|
940 |
+
for _polygons_instances_parsed in polygons_instances_parsed:
|
941 |
+
# Prepare instance.
|
942 |
+
instance = {}
|
943 |
+
|
944 |
+
# polygons_parsed= list(re.finditer(box_pattern, phrase_text))
|
945 |
+
if isinstance(_polygons_instances_parsed, str):
|
946 |
+
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
|
947 |
+
else:
|
948 |
+
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
|
949 |
+
if len(polygons_parsed) == 0:
|
950 |
+
continue
|
951 |
+
|
952 |
+
# a list of list (polygon)
|
953 |
+
bbox = []
|
954 |
+
polygons = []
|
955 |
+
for _polygon_parsed in polygons_parsed:
|
956 |
+
# group 1: whole <loc_\d+>...</loc_\d+>
|
957 |
+
_polygon = _polygon_parsed.group(1)
|
958 |
+
# parse into list of int
|
959 |
+
_polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
|
960 |
+
if with_box_at_start and len(bbox) == 0:
|
961 |
+
if len(_polygon) > 4:
|
962 |
+
# no valid bbox prediction
|
963 |
+
bbox = _polygon[:4]
|
964 |
+
_polygon = _polygon[4:]
|
965 |
+
else:
|
966 |
+
bbox = [0, 0, 0, 0]
|
967 |
+
# abandon last element if is not paired
|
968 |
+
if len(_polygon) % 2 == 1:
|
969 |
+
_polygon = _polygon[:-1]
|
970 |
+
|
971 |
+
# reshape into (n, 2)
|
972 |
+
_polygon = self.coordinates_quantizer.dequantize(
|
973 |
+
torch.tensor(np.array(_polygon).reshape(-1, 2)),
|
974 |
+
size=image_size
|
975 |
+
).reshape(-1).tolist()
|
976 |
+
# reshape back
|
977 |
+
polygons.append(_polygon)
|
978 |
+
|
979 |
+
instance['cat_name'] = phrase
|
980 |
+
instance['polygons'] = polygons
|
981 |
+
if len(bbox) != 0:
|
982 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
983 |
+
boxes=torch.tensor([bbox]),
|
984 |
+
size=image_size
|
985 |
+
).tolist()[0]
|
986 |
+
|
987 |
+
instances.append(instance)
|
988 |
+
|
989 |
+
return instances
|
990 |
+
|
991 |
+
def __call__(
|
992 |
+
self,
|
993 |
+
text=None,
|
994 |
+
image_size=None,
|
995 |
+
parse_tasks=None,
|
996 |
+
):
|
997 |
+
"""
|
998 |
+
Args:
|
999 |
+
text: model outputs
|
1000 |
+
image_size: (width, height)
|
1001 |
+
parse_tasks: a list of tasks to parse, if None, parse all tasks.
|
1002 |
+
|
1003 |
+
"""
|
1004 |
+
if parse_tasks is not None:
|
1005 |
+
if isinstance(parse_tasks, str):
|
1006 |
+
parse_tasks = [parse_tasks]
|
1007 |
+
for _parse_task in parse_tasks:
|
1008 |
+
assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
|
1009 |
+
|
1010 |
+
# sequence or text should be provided
|
1011 |
+
assert text is not None, 'text should be provided'
|
1012 |
+
|
1013 |
+
parsed_dict = {
|
1014 |
+
'text': text
|
1015 |
+
}
|
1016 |
+
|
1017 |
+
for task in self.parse_tasks:
|
1018 |
+
if parse_tasks is not None and task not in parse_tasks:
|
1019 |
+
continue
|
1020 |
+
|
1021 |
+
pattern = self.parse_tasks_configs[task].get('PATTERN', None)
|
1022 |
+
|
1023 |
+
if task == 'ocr':
|
1024 |
+
instances = self.parse_ocr_from_text_and_spans(
|
1025 |
+
text,
|
1026 |
+
pattern=pattern,
|
1027 |
+
image_size=image_size,
|
1028 |
+
area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
|
1029 |
+
)
|
1030 |
+
parsed_dict['ocr'] = instances
|
1031 |
+
elif task == 'phrase_grounding':
|
1032 |
+
instances = self.parse_phrase_grounding_from_text_and_spans(
|
1033 |
+
text,
|
1034 |
+
pattern=pattern,
|
1035 |
+
image_size=image_size,
|
1036 |
+
)
|
1037 |
+
parsed_dict['phrase_grounding'] = instances
|
1038 |
+
elif task == 'pure_text':
|
1039 |
+
parsed_dict['pure_text'] = text
|
1040 |
+
elif task == 'description_with_bboxes':
|
1041 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1042 |
+
text,
|
1043 |
+
pattern=pattern,
|
1044 |
+
image_size=image_size,
|
1045 |
+
)
|
1046 |
+
parsed_dict['description_with_bboxes'] = instances
|
1047 |
+
elif task == 'description_with_polygons':
|
1048 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1049 |
+
text,
|
1050 |
+
pattern=pattern,
|
1051 |
+
image_size=image_size,
|
1052 |
+
)
|
1053 |
+
parsed_dict['description_with_polygons'] = instances
|
1054 |
+
elif task == 'polygons':
|
1055 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1056 |
+
text,
|
1057 |
+
pattern=pattern,
|
1058 |
+
image_size=image_size,
|
1059 |
+
allow_empty_phrase=True,
|
1060 |
+
)
|
1061 |
+
parsed_dict['polygons'] = instances
|
1062 |
+
elif task == 'bboxes':
|
1063 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1064 |
+
text,
|
1065 |
+
pattern=pattern,
|
1066 |
+
image_size=image_size,
|
1067 |
+
allow_empty_phrase=True,
|
1068 |
+
)
|
1069 |
+
parsed_dict['bboxes'] = instances
|
1070 |
+
elif task == 'description_with_bboxes_or_polygons':
|
1071 |
+
if '<poly>' in text:
|
1072 |
+
# only support either polygons or bboxes, not both at the same time
|
1073 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1074 |
+
text,
|
1075 |
+
pattern=pattern,
|
1076 |
+
image_size=image_size,
|
1077 |
+
)
|
1078 |
+
else:
|
1079 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1080 |
+
text,
|
1081 |
+
pattern=pattern,
|
1082 |
+
image_size=image_size,
|
1083 |
+
)
|
1084 |
+
parsed_dict['description_with_bboxes_or_polygons'] = instances
|
1085 |
+
else:
|
1086 |
+
raise ValueError("task {} is not supported".format(task))
|
1087 |
+
|
1088 |
+
return parsed_dict
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_max_length": 1024
|
3 |
+
}
|
4 |
+
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|