theblackcat102 commited on
Commit
bdf5de5
1 Parent(s): 7cf10f8

Upload 8 files

Browse files
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/galactica-1.3b",
3
+ "_remove_final_layer_norm": false,
4
+ "activation_dropout": 0.0,
5
+ "activation_function": "gelu",
6
+ "architectures": [
7
+ "OPTForCausalLM"
8
+ ],
9
+ "attention_dropout": 0.1,
10
+ "bos_token_id": 0,
11
+ "do_layer_norm_before": true,
12
+ "dropout": 0.1,
13
+ "enable_bias": true,
14
+ "eos_token_id": 2,
15
+ "ffn_dim": 8192,
16
+ "hidden_size": 2048,
17
+ "init_std": 0.02,
18
+ "layer_norm_elementwise_affine": true,
19
+ "layerdrop": 0.0,
20
+ "learned_embeddings": true,
21
+ "max_position_embeddings": 2048,
22
+ "model_type": "opt",
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 1,
26
+ "scale_embeddings": false,
27
+ "torch_dtype": "float16",
28
+ "transformers_version": "4.25.1",
29
+ "use_cache": true,
30
+ "vocab_size": 50004,
31
+ "word_embed_proj_dim": 2048
32
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ce076ed29967ad92e44f5866f1e11c519d72ad0277f3192f737a480201f512b
3
+ size 2630541561
special_tokens_map.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<bot>",
4
+ "<human>",
5
+ "</prefix>",
6
+ "<prefix>"
7
+ ],
8
+ "eos_token": "</s>",
9
+ "pad_token": "<pad>"
10
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "model_max_length": 1000000000000000019884624838656,
3
+ "name_or_path": "facebook/galactica-1.3b",
4
+ "special_tokens_map_file": "/content/tokenizer/special_tokens_map.json",
5
+ "tokenizer_class": "PreTrainedTokenizerFast"
6
+ }
trainer_state.json ADDED
@@ -0,0 +1,1720 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.217287974468663,
5
+ "global_step": 2000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 2.666666666666667e-06,
13
+ "loss": 2.5689,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 3.410009602540877e-06,
19
+ "loss": 2.2872,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 3.899727994397217e-06,
25
+ "loss": 2.2045,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 0.0,
30
+ "learning_rate": 4.242838952070665e-06,
31
+ "loss": 2.1665,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 4.507189546742703e-06,
37
+ "loss": 2.0691,
38
+ "step": 50
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 4.722272031045718e-06,
43
+ "loss": 2.0554,
44
+ "step": 60
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "learning_rate": 4.9035975752993475e-06,
49
+ "loss": 2.0278,
50
+ "step": 70
51
+ },
52
+ {
53
+ "epoch": 0.01,
54
+ "learning_rate": 5.060338910107844e-06,
55
+ "loss": 2.0495,
56
+ "step": 80
57
+ },
58
+ {
59
+ "epoch": 0.01,
60
+ "learning_rate": 5.1983733510531e-06,
61
+ "loss": 2.0476,
62
+ "step": 90
63
+ },
64
+ {
65
+ "epoch": 0.01,
66
+ "learning_rate": 5.3216938522601335e-06,
67
+ "loss": 2.0547,
68
+ "step": 100
69
+ },
70
+ {
71
+ "epoch": 0.01,
72
+ "learning_rate": 5.433137327841662e-06,
73
+ "loss": 1.992,
74
+ "step": 110
75
+ },
76
+ {
77
+ "epoch": 0.01,
78
+ "learning_rate": 5.534791897046749e-06,
79
+ "loss": 2.0016,
80
+ "step": 120
81
+ },
82
+ {
83
+ "epoch": 0.01,
84
+ "learning_rate": 5.6282392274646635e-06,
85
+ "loss": 2.0251,
86
+ "step": 130
87
+ },
88
+ {
89
+ "epoch": 0.02,
90
+ "learning_rate": 5.71470613401092e-06,
91
+ "loss": 1.9642,
92
+ "step": 140
93
+ },
94
+ {
95
+ "epoch": 0.02,
96
+ "learning_rate": 5.795163382432731e-06,
97
+ "loss": 1.9489,
98
+ "step": 150
99
+ },
100
+ {
101
+ "epoch": 0.02,
102
+ "learning_rate": 5.870392331521204e-06,
103
+ "loss": 1.9492,
104
+ "step": 160
105
+ },
106
+ {
107
+ "epoch": 0.02,
108
+ "learning_rate": 5.941031212303129e-06,
109
+ "loss": 1.9794,
110
+ "step": 170
111
+ },
112
+ {
113
+ "epoch": 0.02,
114
+ "learning_rate": 6.007608082613048e-06,
115
+ "loss": 1.9443,
116
+ "step": 180
117
+ },
118
+ {
119
+ "epoch": 0.02,
120
+ "learning_rate": 6.070564811128651e-06,
121
+ "loss": 1.9561,
122
+ "step": 190
123
+ },
124
+ {
125
+ "epoch": 0.02,
126
+ "learning_rate": 6.130274870425884e-06,
127
+ "loss": 1.9445,
128
+ "step": 200
129
+ },
130
+ {
131
+ "epoch": 0.02,
132
+ "learning_rate": 6.187056762962811e-06,
133
+ "loss": 1.9922,
134
+ "step": 210
135
+ },
136
+ {
137
+ "epoch": 0.02,
138
+ "learning_rate": 6.241184306240316e-06,
139
+ "loss": 1.9092,
140
+ "step": 220
141
+ },
142
+ {
143
+ "epoch": 0.02,
144
+ "learning_rate": 6.292894619573035e-06,
145
+ "loss": 1.9877,
146
+ "step": 230
147
+ },
148
+ {
149
+ "epoch": 0.03,
150
+ "learning_rate": 6.3423944025283676e-06,
151
+ "loss": 1.9013,
152
+ "step": 240
153
+ },
154
+ {
155
+ "epoch": 0.03,
156
+ "learning_rate": 6.385204482203244e-06,
157
+ "loss": 1.9351,
158
+ "step": 250
159
+ },
160
+ {
161
+ "epoch": 0.03,
162
+ "learning_rate": 6.430985882568613e-06,
163
+ "loss": 1.9364,
164
+ "step": 260
165
+ },
166
+ {
167
+ "epoch": 0.03,
168
+ "learning_rate": 6.475026117410103e-06,
169
+ "loss": 1.9298,
170
+ "step": 270
171
+ },
172
+ {
173
+ "epoch": 0.03,
174
+ "learning_rate": 6.51745278911487e-06,
175
+ "loss": 1.9262,
176
+ "step": 280
177
+ },
178
+ {
179
+ "epoch": 0.03,
180
+ "learning_rate": 6.55837996735795e-06,
181
+ "loss": 1.9245,
182
+ "step": 290
183
+ },
184
+ {
185
+ "epoch": 0.03,
186
+ "learning_rate": 6.597910037536681e-06,
187
+ "loss": 1.9264,
188
+ "step": 300
189
+ },
190
+ {
191
+ "epoch": 0.03,
192
+ "learning_rate": 6.6361352440011835e-06,
193
+ "loss": 1.9318,
194
+ "step": 310
195
+ },
196
+ {
197
+ "epoch": 0.03,
198
+ "learning_rate": 6.673138986625154e-06,
199
+ "loss": 1.8992,
200
+ "step": 320
201
+ },
202
+ {
203
+ "epoch": 0.04,
204
+ "learning_rate": 6.708996916564478e-06,
205
+ "loss": 1.8958,
206
+ "step": 330
207
+ },
208
+ {
209
+ "epoch": 0.04,
210
+ "learning_rate": 6.74377786740708e-06,
211
+ "loss": 1.9317,
212
+ "step": 340
213
+ },
214
+ {
215
+ "epoch": 0.04,
216
+ "learning_rate": 6.777544650524216e-06,
217
+ "loss": 1.8891,
218
+ "step": 350
219
+ },
220
+ {
221
+ "epoch": 0.04,
222
+ "learning_rate": 6.810354737716999e-06,
223
+ "loss": 1.8944,
224
+ "step": 360
225
+ },
226
+ {
227
+ "epoch": 0.04,
228
+ "learning_rate": 6.842260849796047e-06,
229
+ "loss": 1.8904,
230
+ "step": 370
231
+ },
232
+ {
233
+ "epoch": 0.04,
234
+ "learning_rate": 6.873311466232601e-06,
235
+ "loss": 1.9326,
236
+ "step": 380
237
+ },
238
+ {
239
+ "epoch": 0.04,
240
+ "learning_rate": 6.903551268251219e-06,
241
+ "loss": 1.8795,
242
+ "step": 390
243
+ },
244
+ {
245
+ "epoch": 0.04,
246
+ "learning_rate": 6.933021525529835e-06,
247
+ "loss": 1.8729,
248
+ "step": 400
249
+ },
250
+ {
251
+ "epoch": 0.04,
252
+ "learning_rate": 6.961760434906346e-06,
253
+ "loss": 1.861,
254
+ "step": 410
255
+ },
256
+ {
257
+ "epoch": 0.05,
258
+ "learning_rate": 6.9898034180667605e-06,
259
+ "loss": 1.9003,
260
+ "step": 420
261
+ },
262
+ {
263
+ "epoch": 0.05,
264
+ "learning_rate": 7.017183384035125e-06,
265
+ "loss": 1.9061,
266
+ "step": 430
267
+ },
268
+ {
269
+ "epoch": 0.05,
270
+ "learning_rate": 7.043930961344266e-06,
271
+ "loss": 1.9146,
272
+ "step": 440
273
+ },
274
+ {
275
+ "epoch": 0.05,
276
+ "learning_rate": 7.07007470399505e-06,
277
+ "loss": 1.8741,
278
+ "step": 450
279
+ },
280
+ {
281
+ "epoch": 0.05,
282
+ "learning_rate": 7.095641274676984e-06,
283
+ "loss": 1.8402,
284
+ "step": 460
285
+ },
286
+ {
287
+ "epoch": 0.05,
288
+ "learning_rate": 7.120655608197665e-06,
289
+ "loss": 1.9109,
290
+ "step": 470
291
+ },
292
+ {
293
+ "epoch": 0.05,
294
+ "learning_rate": 7.145141057632318e-06,
295
+ "loss": 1.8829,
296
+ "step": 480
297
+ },
298
+ {
299
+ "epoch": 0.05,
300
+ "learning_rate": 7.169119525340562e-06,
301
+ "loss": 1.8557,
302
+ "step": 490
303
+ },
304
+ {
305
+ "epoch": 0.05,
306
+ "learning_rate": 7.19261158069258e-06,
307
+ "loss": 1.8577,
308
+ "step": 500
309
+ },
310
+ {
311
+ "epoch": 0.05,
312
+ "eval_webgpt_accuracy": 0.4847224518236187,
313
+ "eval_webgpt_loss": 2.392578125,
314
+ "eval_webgpt_runtime": 337.627,
315
+ "eval_webgpt_samples_per_second": 11.599,
316
+ "eval_webgpt_steps_per_second": 0.726,
317
+ "step": 500
318
+ },
319
+ {
320
+ "epoch": 0.05,
321
+ "eval_prompt_dialogue_accuracy": 0.5612746203747981,
322
+ "eval_prompt_dialogue_loss": 1.828125,
323
+ "eval_prompt_dialogue_runtime": 811.1162,
324
+ "eval_prompt_dialogue_samples_per_second": 12.71,
325
+ "eval_prompt_dialogue_steps_per_second": 0.795,
326
+ "step": 500
327
+ },
328
+ {
329
+ "epoch": 0.05,
330
+ "eval_squad_v2_accuracy": 0.9115060111379335,
331
+ "eval_squad_v2_loss": NaN,
332
+ "eval_squad_v2_runtime": 941.3453,
333
+ "eval_squad_v2_samples_per_second": 12.613,
334
+ "eval_squad_v2_steps_per_second": 0.789,
335
+ "step": 500
336
+ },
337
+ {
338
+ "epoch": 0.05,
339
+ "eval_adversarial_qa_accuracy": 0.8083160800552105,
340
+ "eval_adversarial_qa_loss": 0.86083984375,
341
+ "eval_adversarial_qa_runtime": 238.8648,
342
+ "eval_adversarial_qa_samples_per_second": 12.559,
343
+ "eval_adversarial_qa_steps_per_second": 0.787,
344
+ "step": 500
345
+ },
346
+ {
347
+ "epoch": 0.05,
348
+ "eval_trivia_qa_nocontext_accuracy": 0.45998188422713815,
349
+ "eval_trivia_qa_nocontext_loss": 3.12890625,
350
+ "eval_trivia_qa_nocontext_runtime": 1249.2124,
351
+ "eval_trivia_qa_nocontext_samples_per_second": 14.364,
352
+ "eval_trivia_qa_nocontext_steps_per_second": 0.898,
353
+ "step": 500
354
+ },
355
+ {
356
+ "epoch": 0.05,
357
+ "eval_m2m_translation_accuracy": 0.5733300105250808,
358
+ "eval_m2m_translation_loss": 1.8857421875,
359
+ "eval_m2m_translation_runtime": 3725.0595,
360
+ "eval_m2m_translation_samples_per_second": 14.208,
361
+ "eval_m2m_translation_steps_per_second": 0.888,
362
+ "step": 500
363
+ },
364
+ {
365
+ "epoch": 0.05,
366
+ "eval_xsum_accuracy": 0.5671291686677834,
367
+ "eval_xsum_loss": 1.9658203125,
368
+ "eval_xsum_runtime": 1011.0399,
369
+ "eval_xsum_samples_per_second": 11.208,
370
+ "eval_xsum_steps_per_second": 0.701,
371
+ "step": 500
372
+ },
373
+ {
374
+ "epoch": 0.05,
375
+ "eval_cnn_dailymail_accuracy": 0.6565405592058271,
376
+ "eval_cnn_dailymail_loss": 1.5810546875,
377
+ "eval_cnn_dailymail_runtime": 1213.6108,
378
+ "eval_cnn_dailymail_samples_per_second": 11.015,
379
+ "eval_cnn_dailymail_steps_per_second": 0.689,
380
+ "step": 500
381
+ },
382
+ {
383
+ "epoch": 0.05,
384
+ "eval_multi_news_accuracy": 0.5175576159426271,
385
+ "eval_multi_news_loss": 2.33203125,
386
+ "eval_multi_news_runtime": 512.3687,
387
+ "eval_multi_news_samples_per_second": 10.973,
388
+ "eval_multi_news_steps_per_second": 0.687,
389
+ "step": 500
390
+ },
391
+ {
392
+ "epoch": 0.05,
393
+ "eval_scitldr_accuracy": 0.46241087965899574,
394
+ "eval_scitldr_loss": 2.5234375,
395
+ "eval_scitldr_runtime": 57.2333,
396
+ "eval_scitldr_samples_per_second": 10.815,
397
+ "eval_scitldr_steps_per_second": 0.681,
398
+ "step": 500
399
+ },
400
+ {
401
+ "epoch": 0.05,
402
+ "eval_soda_accuracy": 0.7121364530942489,
403
+ "eval_soda_loss": 1.21484375,
404
+ "eval_soda_runtime": 82.3256,
405
+ "eval_soda_samples_per_second": 12.159,
406
+ "eval_soda_steps_per_second": 0.765,
407
+ "step": 500
408
+ },
409
+ {
410
+ "epoch": 0.05,
411
+ "eval_joke_accuracy": 0.454450170320552,
412
+ "eval_joke_loss": 2.62109375,
413
+ "eval_joke_runtime": 6.9296,
414
+ "eval_joke_samples_per_second": 10.967,
415
+ "eval_joke_steps_per_second": 0.722,
416
+ "step": 500
417
+ },
418
+ {
419
+ "epoch": 0.05,
420
+ "eval_gsm8k_accuracy": 0.8305793220560381,
421
+ "eval_gsm8k_loss": 0.61328125,
422
+ "eval_gsm8k_runtime": 113.5097,
423
+ "eval_gsm8k_samples_per_second": 11.62,
424
+ "eval_gsm8k_steps_per_second": 0.731,
425
+ "step": 500
426
+ },
427
+ {
428
+ "epoch": 0.05,
429
+ "eval_samsum_accuracy": 0.6179719084733047,
430
+ "eval_samsum_loss": 1.5537109375,
431
+ "eval_samsum_runtime": 73.3198,
432
+ "eval_samsum_samples_per_second": 11.157,
433
+ "eval_samsum_steps_per_second": 0.709,
434
+ "step": 500
435
+ },
436
+ {
437
+ "epoch": 0.06,
438
+ "learning_rate": 7.215636566090451e-06,
439
+ "loss": 1.8655,
440
+ "step": 510
441
+ },
442
+ {
443
+ "epoch": 0.06,
444
+ "learning_rate": 7.238212692653954e-06,
445
+ "loss": 1.9284,
446
+ "step": 520
447
+ },
448
+ {
449
+ "epoch": 0.06,
450
+ "learning_rate": 7.260357126756832e-06,
451
+ "loss": 1.8522,
452
+ "step": 530
453
+ },
454
+ {
455
+ "epoch": 0.06,
456
+ "learning_rate": 7.282086068443704e-06,
457
+ "loss": 1.8869,
458
+ "step": 540
459
+ },
460
+ {
461
+ "epoch": 0.06,
462
+ "learning_rate": 7.303414822624985e-06,
463
+ "loss": 1.905,
464
+ "step": 550
465
+ },
466
+ {
467
+ "epoch": 0.06,
468
+ "learning_rate": 7.324357863833543e-06,
469
+ "loss": 1.8483,
470
+ "step": 560
471
+ },
472
+ {
473
+ "epoch": 0.06,
474
+ "learning_rate": 7.344928895229384e-06,
475
+ "loss": 1.8628,
476
+ "step": 570
477
+ },
478
+ {
479
+ "epoch": 0.06,
480
+ "learning_rate": 7.365140902454744e-06,
481
+ "loss": 1.8982,
482
+ "step": 580
483
+ },
484
+ {
485
+ "epoch": 0.06,
486
+ "learning_rate": 7.385006202869703e-06,
487
+ "loss": 1.834,
488
+ "step": 590
489
+ },
490
+ {
491
+ "epoch": 0.07,
492
+ "learning_rate": 7.404536490635762e-06,
493
+ "loss": 1.8488,
494
+ "step": 600
495
+ },
496
+ {
497
+ "epoch": 0.07,
498
+ "learning_rate": 7.423742878060626e-06,
499
+ "loss": 1.8585,
500
+ "step": 610
501
+ },
502
+ {
503
+ "epoch": 0.07,
504
+ "learning_rate": 7.442635933570175e-06,
505
+ "loss": 1.8292,
506
+ "step": 620
507
+ },
508
+ {
509
+ "epoch": 0.07,
510
+ "learning_rate": 7.461225716632522e-06,
511
+ "loss": 1.8399,
512
+ "step": 630
513
+ },
514
+ {
515
+ "epoch": 0.07,
516
+ "learning_rate": 7.479521809923099e-06,
517
+ "loss": 1.8775,
518
+ "step": 640
519
+ },
520
+ {
521
+ "epoch": 0.07,
522
+ "learning_rate": 7.497533348988249e-06,
523
+ "loss": 1.8593,
524
+ "step": 650
525
+ },
526
+ {
527
+ "epoch": 0.07,
528
+ "learning_rate": 7.515269049637215e-06,
529
+ "loss": 1.8557,
530
+ "step": 660
531
+ },
532
+ {
533
+ "epoch": 0.07,
534
+ "learning_rate": 7.532737233268121e-06,
535
+ "loss": 1.8427,
536
+ "step": 670
537
+ },
538
+ {
539
+ "epoch": 0.07,
540
+ "learning_rate": 7.5499458503121685e-06,
541
+ "loss": 1.859,
542
+ "step": 680
543
+ },
544
+ {
545
+ "epoch": 0.07,
546
+ "learning_rate": 7.566902501961364e-06,
547
+ "loss": 1.8111,
548
+ "step": 690
549
+ },
550
+ {
551
+ "epoch": 0.08,
552
+ "learning_rate": 7.5836144603284295e-06,
553
+ "loss": 1.8246,
554
+ "step": 700
555
+ },
556
+ {
557
+ "epoch": 0.08,
558
+ "learning_rate": 7.600088687172717e-06,
559
+ "loss": 1.8613,
560
+ "step": 710
561
+ },
562
+ {
563
+ "epoch": 0.08,
564
+ "learning_rate": 7.616331851312801e-06,
565
+ "loss": 1.8478,
566
+ "step": 720
567
+ },
568
+ {
569
+ "epoch": 0.08,
570
+ "learning_rate": 7.632350344834765e-06,
571
+ "loss": 1.8839,
572
+ "step": 730
573
+ },
574
+ {
575
+ "epoch": 0.08,
576
+ "learning_rate": 7.648150298194777e-06,
577
+ "loss": 1.8625,
578
+ "step": 740
579
+ },
580
+ {
581
+ "epoch": 0.08,
582
+ "learning_rate": 7.663737594305231e-06,
583
+ "loss": 1.8291,
584
+ "step": 750
585
+ },
586
+ {
587
+ "epoch": 0.08,
588
+ "learning_rate": 7.679117881685476e-06,
589
+ "loss": 1.836,
590
+ "step": 760
591
+ },
592
+ {
593
+ "epoch": 0.08,
594
+ "learning_rate": 7.6942965867507e-06,
595
+ "loss": 1.8102,
596
+ "step": 770
597
+ },
598
+ {
599
+ "epoch": 0.08,
600
+ "learning_rate": 7.709278925305836e-06,
601
+ "loss": 1.8353,
602
+ "step": 780
603
+ },
604
+ {
605
+ "epoch": 0.09,
606
+ "learning_rate": 7.72406991330548e-06,
607
+ "loss": 1.8713,
608
+ "step": 790
609
+ },
610
+ {
611
+ "epoch": 0.09,
612
+ "learning_rate": 7.738674376935279e-06,
613
+ "loss": 1.8314,
614
+ "step": 800
615
+ },
616
+ {
617
+ "epoch": 0.09,
618
+ "learning_rate": 7.753096962065562e-06,
619
+ "loss": 1.8553,
620
+ "step": 810
621
+ },
622
+ {
623
+ "epoch": 0.09,
624
+ "learning_rate": 7.767342143123527e-06,
625
+ "loss": 1.8318,
626
+ "step": 820
627
+ },
628
+ {
629
+ "epoch": 0.09,
630
+ "learning_rate": 7.781414231426347e-06,
631
+ "loss": 1.8401,
632
+ "step": 830
633
+ },
634
+ {
635
+ "epoch": 0.09,
636
+ "learning_rate": 7.79531738301407e-06,
637
+ "loss": 1.8108,
638
+ "step": 840
639
+ },
640
+ {
641
+ "epoch": 0.09,
642
+ "learning_rate": 7.809055606017904e-06,
643
+ "loss": 1.8563,
644
+ "step": 850
645
+ },
646
+ {
647
+ "epoch": 0.09,
648
+ "learning_rate": 7.822632767596549e-06,
649
+ "loss": 1.8408,
650
+ "step": 860
651
+ },
652
+ {
653
+ "epoch": 0.09,
654
+ "learning_rate": 7.836052600470646e-06,
655
+ "loss": 1.8096,
656
+ "step": 870
657
+ },
658
+ {
659
+ "epoch": 0.1,
660
+ "learning_rate": 7.849318709082941e-06,
661
+ "loss": 1.8264,
662
+ "step": 880
663
+ },
664
+ {
665
+ "epoch": 0.1,
666
+ "learning_rate": 7.862434575409602e-06,
667
+ "loss": 1.8902,
668
+ "step": 890
669
+ },
670
+ {
671
+ "epoch": 0.1,
672
+ "learning_rate": 7.875403564446145e-06,
673
+ "loss": 1.7953,
674
+ "step": 900
675
+ },
676
+ {
677
+ "epoch": 0.1,
678
+ "learning_rate": 7.888228929389561e-06,
679
+ "loss": 1.837,
680
+ "step": 910
681
+ },
682
+ {
683
+ "epoch": 0.1,
684
+ "learning_rate": 7.900913816536647e-06,
685
+ "loss": 1.7704,
686
+ "step": 920
687
+ },
688
+ {
689
+ "epoch": 0.1,
690
+ "learning_rate": 7.913461269916965e-06,
691
+ "loss": 1.8251,
692
+ "step": 930
693
+ },
694
+ {
695
+ "epoch": 0.1,
696
+ "learning_rate": 7.925874235677506e-06,
697
+ "loss": 1.8294,
698
+ "step": 940
699
+ },
700
+ {
701
+ "epoch": 0.1,
702
+ "learning_rate": 7.938155566234842e-06,
703
+ "loss": 1.8306,
704
+ "step": 950
705
+ },
706
+ {
707
+ "epoch": 0.1,
708
+ "learning_rate": 7.950308024209451e-06,
709
+ "loss": 1.7889,
710
+ "step": 960
711
+ },
712
+ {
713
+ "epoch": 0.11,
714
+ "learning_rate": 7.962334286155715e-06,
715
+ "loss": 1.7922,
716
+ "step": 970
717
+ },
718
+ {
719
+ "epoch": 0.11,
720
+ "learning_rate": 7.974236946100272e-06,
721
+ "loss": 1.7679,
722
+ "step": 980
723
+ },
724
+ {
725
+ "epoch": 0.11,
726
+ "learning_rate": 7.986018518900343e-06,
727
+ "loss": 1.8068,
728
+ "step": 990
729
+ },
730
+ {
731
+ "epoch": 0.11,
732
+ "learning_rate": 7.997681443432989e-06,
733
+ "loss": 1.8467,
734
+ "step": 1000
735
+ },
736
+ {
737
+ "epoch": 0.11,
738
+ "eval_webgpt_accuracy": 0.4853852488269729,
739
+ "eval_webgpt_loss": 2.388671875,
740
+ "eval_webgpt_runtime": 337.66,
741
+ "eval_webgpt_samples_per_second": 11.597,
742
+ "eval_webgpt_steps_per_second": 0.726,
743
+ "step": 1000
744
+ },
745
+ {
746
+ "epoch": 0.11,
747
+ "eval_prompt_dialogue_accuracy": 0.5656945584798752,
748
+ "eval_prompt_dialogue_loss": 1.7978515625,
749
+ "eval_prompt_dialogue_runtime": 810.7166,
750
+ "eval_prompt_dialogue_samples_per_second": 12.716,
751
+ "eval_prompt_dialogue_steps_per_second": 0.796,
752
+ "step": 1000
753
+ },
754
+ {
755
+ "epoch": 0.11,
756
+ "eval_squad_v2_accuracy": 0.929180907765482,
757
+ "eval_squad_v2_loss": NaN,
758
+ "eval_squad_v2_runtime": 942.6897,
759
+ "eval_squad_v2_samples_per_second": 12.595,
760
+ "eval_squad_v2_steps_per_second": 0.788,
761
+ "step": 1000
762
+ },
763
+ {
764
+ "epoch": 0.11,
765
+ "eval_adversarial_qa_accuracy": 0.8106740280653324,
766
+ "eval_adversarial_qa_loss": 0.8291015625,
767
+ "eval_adversarial_qa_runtime": 239.9039,
768
+ "eval_adversarial_qa_samples_per_second": 12.505,
769
+ "eval_adversarial_qa_steps_per_second": 0.784,
770
+ "step": 1000
771
+ },
772
+ {
773
+ "epoch": 0.11,
774
+ "eval_trivia_qa_nocontext_accuracy": 0.46837345154352583,
775
+ "eval_trivia_qa_nocontext_loss": 3.052734375,
776
+ "eval_trivia_qa_nocontext_runtime": 1248.9886,
777
+ "eval_trivia_qa_nocontext_samples_per_second": 14.367,
778
+ "eval_trivia_qa_nocontext_steps_per_second": 0.898,
779
+ "step": 1000
780
+ },
781
+ {
782
+ "epoch": 0.11,
783
+ "eval_m2m_translation_accuracy": 0.6128791362753888,
784
+ "eval_m2m_translation_loss": 1.6904296875,
785
+ "eval_m2m_translation_runtime": 3724.3046,
786
+ "eval_m2m_translation_samples_per_second": 14.21,
787
+ "eval_m2m_translation_steps_per_second": 0.888,
788
+ "step": 1000
789
+ },
790
+ {
791
+ "epoch": 0.11,
792
+ "eval_xsum_accuracy": 0.576201200101912,
793
+ "eval_xsum_loss": 1.90625,
794
+ "eval_xsum_runtime": 1013.837,
795
+ "eval_xsum_samples_per_second": 11.177,
796
+ "eval_xsum_steps_per_second": 0.699,
797
+ "step": 1000
798
+ },
799
+ {
800
+ "epoch": 0.11,
801
+ "eval_cnn_dailymail_accuracy": 0.6590085257947359,
802
+ "eval_cnn_dailymail_loss": 1.5537109375,
803
+ "eval_cnn_dailymail_runtime": 1212.8269,
804
+ "eval_cnn_dailymail_samples_per_second": 11.022,
805
+ "eval_cnn_dailymail_steps_per_second": 0.689,
806
+ "step": 1000
807
+ },
808
+ {
809
+ "epoch": 0.11,
810
+ "eval_multi_news_accuracy": 0.5213214574389622,
811
+ "eval_multi_news_loss": 2.302734375,
812
+ "eval_multi_news_runtime": 514.4889,
813
+ "eval_multi_news_samples_per_second": 10.927,
814
+ "eval_multi_news_steps_per_second": 0.684,
815
+ "step": 1000
816
+ },
817
+ {
818
+ "epoch": 0.11,
819
+ "eval_scitldr_accuracy": 0.4667123357182727,
820
+ "eval_scitldr_loss": 2.50390625,
821
+ "eval_scitldr_runtime": 55.8523,
822
+ "eval_scitldr_samples_per_second": 11.083,
823
+ "eval_scitldr_steps_per_second": 0.698,
824
+ "step": 1000
825
+ },
826
+ {
827
+ "epoch": 0.11,
828
+ "eval_soda_accuracy": 0.7221954952984911,
829
+ "eval_soda_loss": 1.1513671875,
830
+ "eval_soda_runtime": 82.1743,
831
+ "eval_soda_samples_per_second": 12.181,
832
+ "eval_soda_steps_per_second": 0.767,
833
+ "step": 1000
834
+ },
835
+ {
836
+ "epoch": 0.11,
837
+ "eval_joke_accuracy": 0.45549829679447984,
838
+ "eval_joke_loss": 2.5625,
839
+ "eval_joke_runtime": 7.1872,
840
+ "eval_joke_samples_per_second": 10.574,
841
+ "eval_joke_steps_per_second": 0.696,
842
+ "step": 1000
843
+ },
844
+ {
845
+ "epoch": 0.11,
846
+ "eval_gsm8k_accuracy": 0.836947292796029,
847
+ "eval_gsm8k_loss": 0.591796875,
848
+ "eval_gsm8k_runtime": 112.7859,
849
+ "eval_gsm8k_samples_per_second": 11.695,
850
+ "eval_gsm8k_steps_per_second": 0.736,
851
+ "step": 1000
852
+ },
853
+ {
854
+ "epoch": 0.11,
855
+ "eval_samsum_accuracy": 0.6263182026593306,
856
+ "eval_samsum_loss": 1.5126953125,
857
+ "eval_samsum_runtime": 73.6542,
858
+ "eval_samsum_samples_per_second": 11.106,
859
+ "eval_samsum_steps_per_second": 0.706,
860
+ "step": 1000
861
+ },
862
+ {
863
+ "epoch": 0.11,
864
+ "learning_rate": 7.997895686156621e-06,
865
+ "loss": 1.8114,
866
+ "step": 1010
867
+ },
868
+ {
869
+ "epoch": 0.11,
870
+ "learning_rate": 7.994889523523223e-06,
871
+ "loss": 1.857,
872
+ "step": 1020
873
+ },
874
+ {
875
+ "epoch": 0.11,
876
+ "learning_rate": 7.991883360889824e-06,
877
+ "loss": 1.8195,
878
+ "step": 1030
879
+ },
880
+ {
881
+ "epoch": 0.11,
882
+ "learning_rate": 7.988877198256426e-06,
883
+ "loss": 1.8101,
884
+ "step": 1040
885
+ },
886
+ {
887
+ "epoch": 0.11,
888
+ "learning_rate": 7.985871035623028e-06,
889
+ "loss": 1.8169,
890
+ "step": 1050
891
+ },
892
+ {
893
+ "epoch": 0.12,
894
+ "learning_rate": 7.982864872989627e-06,
895
+ "loss": 1.8414,
896
+ "step": 1060
897
+ },
898
+ {
899
+ "epoch": 0.12,
900
+ "learning_rate": 7.979858710356229e-06,
901
+ "loss": 1.825,
902
+ "step": 1070
903
+ },
904
+ {
905
+ "epoch": 0.12,
906
+ "learning_rate": 7.97685254772283e-06,
907
+ "loss": 1.7882,
908
+ "step": 1080
909
+ },
910
+ {
911
+ "epoch": 0.12,
912
+ "learning_rate": 7.973846385089432e-06,
913
+ "loss": 1.7857,
914
+ "step": 1090
915
+ },
916
+ {
917
+ "epoch": 0.12,
918
+ "learning_rate": 7.970840222456035e-06,
919
+ "loss": 1.8229,
920
+ "step": 1100
921
+ },
922
+ {
923
+ "epoch": 0.12,
924
+ "learning_rate": 7.967834059822637e-06,
925
+ "loss": 1.8152,
926
+ "step": 1110
927
+ },
928
+ {
929
+ "epoch": 0.12,
930
+ "learning_rate": 7.964827897189238e-06,
931
+ "loss": 1.7865,
932
+ "step": 1120
933
+ },
934
+ {
935
+ "epoch": 0.12,
936
+ "learning_rate": 7.96182173455584e-06,
937
+ "loss": 1.8038,
938
+ "step": 1130
939
+ },
940
+ {
941
+ "epoch": 0.12,
942
+ "learning_rate": 7.958815571922442e-06,
943
+ "loss": 1.796,
944
+ "step": 1140
945
+ },
946
+ {
947
+ "epoch": 0.12,
948
+ "learning_rate": 7.955809409289041e-06,
949
+ "loss": 1.7737,
950
+ "step": 1150
951
+ },
952
+ {
953
+ "epoch": 0.13,
954
+ "learning_rate": 7.952803246655643e-06,
955
+ "loss": 1.7958,
956
+ "step": 1160
957
+ },
958
+ {
959
+ "epoch": 0.13,
960
+ "learning_rate": 7.949797084022244e-06,
961
+ "loss": 1.7981,
962
+ "step": 1170
963
+ },
964
+ {
965
+ "epoch": 0.13,
966
+ "learning_rate": 7.946790921388846e-06,
967
+ "loss": 1.8061,
968
+ "step": 1180
969
+ },
970
+ {
971
+ "epoch": 0.13,
972
+ "learning_rate": 7.943784758755448e-06,
973
+ "loss": 1.8395,
974
+ "step": 1190
975
+ },
976
+ {
977
+ "epoch": 0.13,
978
+ "learning_rate": 7.940778596122049e-06,
979
+ "loss": 1.7803,
980
+ "step": 1200
981
+ },
982
+ {
983
+ "epoch": 0.13,
984
+ "learning_rate": 7.937772433488652e-06,
985
+ "loss": 1.7906,
986
+ "step": 1210
987
+ },
988
+ {
989
+ "epoch": 0.13,
990
+ "learning_rate": 7.934766270855254e-06,
991
+ "loss": 1.8076,
992
+ "step": 1220
993
+ },
994
+ {
995
+ "epoch": 0.13,
996
+ "learning_rate": 7.931760108221855e-06,
997
+ "loss": 1.7971,
998
+ "step": 1230
999
+ },
1000
+ {
1001
+ "epoch": 0.13,
1002
+ "learning_rate": 7.928753945588455e-06,
1003
+ "loss": 1.8292,
1004
+ "step": 1240
1005
+ },
1006
+ {
1007
+ "epoch": 0.14,
1008
+ "learning_rate": 7.925747782955057e-06,
1009
+ "loss": 1.7876,
1010
+ "step": 1250
1011
+ },
1012
+ {
1013
+ "epoch": 0.14,
1014
+ "learning_rate": 7.922741620321658e-06,
1015
+ "loss": 1.7499,
1016
+ "step": 1260
1017
+ },
1018
+ {
1019
+ "epoch": 0.14,
1020
+ "learning_rate": 7.91973545768826e-06,
1021
+ "loss": 1.8209,
1022
+ "step": 1270
1023
+ },
1024
+ {
1025
+ "epoch": 0.14,
1026
+ "learning_rate": 7.916729295054861e-06,
1027
+ "loss": 1.7971,
1028
+ "step": 1280
1029
+ },
1030
+ {
1031
+ "epoch": 0.14,
1032
+ "learning_rate": 7.913723132421463e-06,
1033
+ "loss": 1.8168,
1034
+ "step": 1290
1035
+ },
1036
+ {
1037
+ "epoch": 0.14,
1038
+ "learning_rate": 7.910716969788065e-06,
1039
+ "loss": 1.7771,
1040
+ "step": 1300
1041
+ },
1042
+ {
1043
+ "epoch": 0.14,
1044
+ "learning_rate": 7.907710807154668e-06,
1045
+ "loss": 1.7611,
1046
+ "step": 1310
1047
+ },
1048
+ {
1049
+ "epoch": 0.14,
1050
+ "learning_rate": 7.90470464452127e-06,
1051
+ "loss": 1.7673,
1052
+ "step": 1320
1053
+ },
1054
+ {
1055
+ "epoch": 0.14,
1056
+ "learning_rate": 7.90169848188787e-06,
1057
+ "loss": 1.8694,
1058
+ "step": 1330
1059
+ },
1060
+ {
1061
+ "epoch": 0.15,
1062
+ "learning_rate": 7.89869231925447e-06,
1063
+ "loss": 1.7543,
1064
+ "step": 1340
1065
+ },
1066
+ {
1067
+ "epoch": 0.15,
1068
+ "learning_rate": 7.895686156621072e-06,
1069
+ "loss": 1.759,
1070
+ "step": 1350
1071
+ },
1072
+ {
1073
+ "epoch": 0.15,
1074
+ "learning_rate": 7.892679993987674e-06,
1075
+ "loss": 1.7929,
1076
+ "step": 1360
1077
+ },
1078
+ {
1079
+ "epoch": 0.15,
1080
+ "learning_rate": 7.889673831354275e-06,
1081
+ "loss": 1.8223,
1082
+ "step": 1370
1083
+ },
1084
+ {
1085
+ "epoch": 0.15,
1086
+ "learning_rate": 7.886667668720877e-06,
1087
+ "loss": 1.7829,
1088
+ "step": 1380
1089
+ },
1090
+ {
1091
+ "epoch": 0.15,
1092
+ "learning_rate": 7.883661506087479e-06,
1093
+ "loss": 1.8088,
1094
+ "step": 1390
1095
+ },
1096
+ {
1097
+ "epoch": 0.15,
1098
+ "learning_rate": 7.88065534345408e-06,
1099
+ "loss": 1.8012,
1100
+ "step": 1400
1101
+ },
1102
+ {
1103
+ "epoch": 0.15,
1104
+ "learning_rate": 7.877649180820682e-06,
1105
+ "loss": 1.7337,
1106
+ "step": 1410
1107
+ },
1108
+ {
1109
+ "epoch": 0.15,
1110
+ "learning_rate": 7.874643018187283e-06,
1111
+ "loss": 1.7848,
1112
+ "step": 1420
1113
+ },
1114
+ {
1115
+ "epoch": 0.16,
1116
+ "learning_rate": 7.871636855553885e-06,
1117
+ "loss": 1.7741,
1118
+ "step": 1430
1119
+ },
1120
+ {
1121
+ "epoch": 0.16,
1122
+ "learning_rate": 7.868630692920486e-06,
1123
+ "loss": 1.8111,
1124
+ "step": 1440
1125
+ },
1126
+ {
1127
+ "epoch": 0.16,
1128
+ "learning_rate": 7.865624530287088e-06,
1129
+ "loss": 1.7663,
1130
+ "step": 1450
1131
+ },
1132
+ {
1133
+ "epoch": 0.16,
1134
+ "learning_rate": 7.86261836765369e-06,
1135
+ "loss": 1.7635,
1136
+ "step": 1460
1137
+ },
1138
+ {
1139
+ "epoch": 0.16,
1140
+ "learning_rate": 7.859612205020291e-06,
1141
+ "loss": 1.7613,
1142
+ "step": 1470
1143
+ },
1144
+ {
1145
+ "epoch": 0.16,
1146
+ "learning_rate": 7.856606042386892e-06,
1147
+ "loss": 1.7537,
1148
+ "step": 1480
1149
+ },
1150
+ {
1151
+ "epoch": 0.16,
1152
+ "learning_rate": 7.853599879753494e-06,
1153
+ "loss": 1.8094,
1154
+ "step": 1490
1155
+ },
1156
+ {
1157
+ "epoch": 0.16,
1158
+ "learning_rate": 7.850593717120096e-06,
1159
+ "loss": 1.7487,
1160
+ "step": 1500
1161
+ },
1162
+ {
1163
+ "epoch": 0.16,
1164
+ "eval_webgpt_accuracy": 0.486666038374247,
1165
+ "eval_webgpt_loss": 2.384765625,
1166
+ "eval_webgpt_runtime": 336.8175,
1167
+ "eval_webgpt_samples_per_second": 11.626,
1168
+ "eval_webgpt_steps_per_second": 0.727,
1169
+ "step": 1500
1170
+ },
1171
+ {
1172
+ "epoch": 0.16,
1173
+ "eval_prompt_dialogue_accuracy": 0.5696171266680501,
1174
+ "eval_prompt_dialogue_loss": 1.7705078125,
1175
+ "eval_prompt_dialogue_runtime": 809.6613,
1176
+ "eval_prompt_dialogue_samples_per_second": 12.732,
1177
+ "eval_prompt_dialogue_steps_per_second": 0.797,
1178
+ "step": 1500
1179
+ },
1180
+ {
1181
+ "epoch": 0.16,
1182
+ "eval_squad_v2_accuracy": 0.9273763713281866,
1183
+ "eval_squad_v2_loss": NaN,
1184
+ "eval_squad_v2_runtime": 941.2422,
1185
+ "eval_squad_v2_samples_per_second": 12.614,
1186
+ "eval_squad_v2_steps_per_second": 0.789,
1187
+ "step": 1500
1188
+ },
1189
+ {
1190
+ "epoch": 0.16,
1191
+ "eval_adversarial_qa_accuracy": 0.8228088336783989,
1192
+ "eval_adversarial_qa_loss": 0.76416015625,
1193
+ "eval_adversarial_qa_runtime": 238.4374,
1194
+ "eval_adversarial_qa_samples_per_second": 12.582,
1195
+ "eval_adversarial_qa_steps_per_second": 0.788,
1196
+ "step": 1500
1197
+ },
1198
+ {
1199
+ "epoch": 0.16,
1200
+ "eval_trivia_qa_nocontext_accuracy": 0.47413712205101255,
1201
+ "eval_trivia_qa_nocontext_loss": 2.9921875,
1202
+ "eval_trivia_qa_nocontext_runtime": 1248.2736,
1203
+ "eval_trivia_qa_nocontext_samples_per_second": 14.375,
1204
+ "eval_trivia_qa_nocontext_steps_per_second": 0.899,
1205
+ "step": 1500
1206
+ },
1207
+ {
1208
+ "epoch": 0.16,
1209
+ "eval_m2m_translation_accuracy": 0.6384202273383193,
1210
+ "eval_m2m_translation_loss": 1.5703125,
1211
+ "eval_m2m_translation_runtime": 3725.8719,
1212
+ "eval_m2m_translation_samples_per_second": 14.204,
1213
+ "eval_m2m_translation_steps_per_second": 0.888,
1214
+ "step": 1500
1215
+ },
1216
+ {
1217
+ "epoch": 0.16,
1218
+ "eval_xsum_accuracy": 0.5815857676257413,
1219
+ "eval_xsum_loss": 1.87109375,
1220
+ "eval_xsum_runtime": 1009.1324,
1221
+ "eval_xsum_samples_per_second": 11.229,
1222
+ "eval_xsum_steps_per_second": 0.703,
1223
+ "step": 1500
1224
+ },
1225
+ {
1226
+ "epoch": 0.16,
1227
+ "eval_cnn_dailymail_accuracy": 0.6627513117154793,
1228
+ "eval_cnn_dailymail_loss": 1.537109375,
1229
+ "eval_cnn_dailymail_runtime": 1211.2046,
1230
+ "eval_cnn_dailymail_samples_per_second": 11.037,
1231
+ "eval_cnn_dailymail_steps_per_second": 0.69,
1232
+ "step": 1500
1233
+ },
1234
+ {
1235
+ "epoch": 0.16,
1236
+ "eval_multi_news_accuracy": 0.5242124214780086,
1237
+ "eval_multi_news_loss": 2.287109375,
1238
+ "eval_multi_news_runtime": 513.1245,
1239
+ "eval_multi_news_samples_per_second": 10.956,
1240
+ "eval_multi_news_steps_per_second": 0.686,
1241
+ "step": 1500
1242
+ },
1243
+ {
1244
+ "epoch": 0.16,
1245
+ "eval_scitldr_accuracy": 0.46804191723122984,
1246
+ "eval_scitldr_loss": 2.4921875,
1247
+ "eval_scitldr_runtime": 56.2815,
1248
+ "eval_scitldr_samples_per_second": 10.998,
1249
+ "eval_scitldr_steps_per_second": 0.693,
1250
+ "step": 1500
1251
+ },
1252
+ {
1253
+ "epoch": 0.16,
1254
+ "eval_soda_accuracy": 0.7266564618412421,
1255
+ "eval_soda_loss": 1.12890625,
1256
+ "eval_soda_runtime": 82.0556,
1257
+ "eval_soda_samples_per_second": 12.199,
1258
+ "eval_soda_steps_per_second": 0.768,
1259
+ "step": 1500
1260
+ },
1261
+ {
1262
+ "epoch": 0.16,
1263
+ "eval_joke_accuracy": 0.45995283430867323,
1264
+ "eval_joke_loss": 2.5,
1265
+ "eval_joke_runtime": 7.0053,
1266
+ "eval_joke_samples_per_second": 10.849,
1267
+ "eval_joke_steps_per_second": 0.714,
1268
+ "step": 1500
1269
+ },
1270
+ {
1271
+ "epoch": 0.16,
1272
+ "eval_gsm8k_accuracy": 0.8421233100385344,
1273
+ "eval_gsm8k_loss": 0.57177734375,
1274
+ "eval_gsm8k_runtime": 113.8436,
1275
+ "eval_gsm8k_samples_per_second": 11.586,
1276
+ "eval_gsm8k_steps_per_second": 0.729,
1277
+ "step": 1500
1278
+ },
1279
+ {
1280
+ "epoch": 0.16,
1281
+ "eval_samsum_accuracy": 0.6305018339446482,
1282
+ "eval_samsum_loss": 1.490234375,
1283
+ "eval_samsum_runtime": 72.6647,
1284
+ "eval_samsum_samples_per_second": 11.257,
1285
+ "eval_samsum_steps_per_second": 0.716,
1286
+ "step": 1500
1287
+ },
1288
+ {
1289
+ "epoch": 0.16,
1290
+ "learning_rate": 7.847587554486697e-06,
1291
+ "loss": 1.7693,
1292
+ "step": 1510
1293
+ },
1294
+ {
1295
+ "epoch": 0.17,
1296
+ "learning_rate": 7.844882008116638e-06,
1297
+ "loss": 1.7719,
1298
+ "step": 1520
1299
+ },
1300
+ {
1301
+ "epoch": 0.17,
1302
+ "learning_rate": 7.84187584548324e-06,
1303
+ "loss": 1.7777,
1304
+ "step": 1530
1305
+ },
1306
+ {
1307
+ "epoch": 0.17,
1308
+ "learning_rate": 7.838869682849841e-06,
1309
+ "loss": 1.7922,
1310
+ "step": 1540
1311
+ },
1312
+ {
1313
+ "epoch": 0.17,
1314
+ "learning_rate": 7.835863520216443e-06,
1315
+ "loss": 1.7688,
1316
+ "step": 1550
1317
+ },
1318
+ {
1319
+ "epoch": 0.17,
1320
+ "learning_rate": 7.832857357583046e-06,
1321
+ "loss": 1.7848,
1322
+ "step": 1560
1323
+ },
1324
+ {
1325
+ "epoch": 0.17,
1326
+ "learning_rate": 7.829851194949648e-06,
1327
+ "loss": 1.7795,
1328
+ "step": 1570
1329
+ },
1330
+ {
1331
+ "epoch": 0.17,
1332
+ "learning_rate": 7.826845032316247e-06,
1333
+ "loss": 1.7826,
1334
+ "step": 1580
1335
+ },
1336
+ {
1337
+ "epoch": 0.17,
1338
+ "learning_rate": 7.823838869682849e-06,
1339
+ "loss": 1.7511,
1340
+ "step": 1590
1341
+ },
1342
+ {
1343
+ "epoch": 0.17,
1344
+ "learning_rate": 7.82083270704945e-06,
1345
+ "loss": 1.7502,
1346
+ "step": 1600
1347
+ },
1348
+ {
1349
+ "epoch": 0.17,
1350
+ "learning_rate": 7.817826544416052e-06,
1351
+ "loss": 1.7384,
1352
+ "step": 1610
1353
+ },
1354
+ {
1355
+ "epoch": 0.18,
1356
+ "learning_rate": 7.814820381782654e-06,
1357
+ "loss": 1.773,
1358
+ "step": 1620
1359
+ },
1360
+ {
1361
+ "epoch": 0.18,
1362
+ "learning_rate": 7.811814219149255e-06,
1363
+ "loss": 1.785,
1364
+ "step": 1630
1365
+ },
1366
+ {
1367
+ "epoch": 0.18,
1368
+ "learning_rate": 7.808808056515857e-06,
1369
+ "loss": 1.7407,
1370
+ "step": 1640
1371
+ },
1372
+ {
1373
+ "epoch": 0.18,
1374
+ "learning_rate": 7.805801893882458e-06,
1375
+ "loss": 1.8115,
1376
+ "step": 1650
1377
+ },
1378
+ {
1379
+ "epoch": 0.18,
1380
+ "learning_rate": 7.80279573124906e-06,
1381
+ "loss": 1.8207,
1382
+ "step": 1660
1383
+ },
1384
+ {
1385
+ "epoch": 0.18,
1386
+ "learning_rate": 7.799789568615661e-06,
1387
+ "loss": 1.7618,
1388
+ "step": 1670
1389
+ },
1390
+ {
1391
+ "epoch": 0.18,
1392
+ "learning_rate": 7.796783405982263e-06,
1393
+ "loss": 1.7725,
1394
+ "step": 1680
1395
+ },
1396
+ {
1397
+ "epoch": 0.18,
1398
+ "learning_rate": 7.793777243348864e-06,
1399
+ "loss": 1.7618,
1400
+ "step": 1690
1401
+ },
1402
+ {
1403
+ "epoch": 0.18,
1404
+ "learning_rate": 7.790771080715466e-06,
1405
+ "loss": 1.7567,
1406
+ "step": 1700
1407
+ },
1408
+ {
1409
+ "epoch": 0.19,
1410
+ "learning_rate": 7.787764918082068e-06,
1411
+ "loss": 1.7704,
1412
+ "step": 1710
1413
+ },
1414
+ {
1415
+ "epoch": 0.19,
1416
+ "learning_rate": 7.784758755448669e-06,
1417
+ "loss": 1.7426,
1418
+ "step": 1720
1419
+ },
1420
+ {
1421
+ "epoch": 0.19,
1422
+ "learning_rate": 7.78175259281527e-06,
1423
+ "loss": 1.7373,
1424
+ "step": 1730
1425
+ },
1426
+ {
1427
+ "epoch": 0.19,
1428
+ "learning_rate": 7.778746430181872e-06,
1429
+ "loss": 1.7966,
1430
+ "step": 1740
1431
+ },
1432
+ {
1433
+ "epoch": 0.19,
1434
+ "learning_rate": 7.775740267548474e-06,
1435
+ "loss": 1.773,
1436
+ "step": 1750
1437
+ },
1438
+ {
1439
+ "epoch": 0.19,
1440
+ "learning_rate": 7.772734104915075e-06,
1441
+ "loss": 1.7664,
1442
+ "step": 1760
1443
+ },
1444
+ {
1445
+ "epoch": 0.19,
1446
+ "learning_rate": 7.769727942281677e-06,
1447
+ "loss": 1.7518,
1448
+ "step": 1770
1449
+ },
1450
+ {
1451
+ "epoch": 0.19,
1452
+ "learning_rate": 7.766721779648278e-06,
1453
+ "loss": 1.7743,
1454
+ "step": 1780
1455
+ },
1456
+ {
1457
+ "epoch": 0.19,
1458
+ "learning_rate": 7.76371561701488e-06,
1459
+ "loss": 1.7882,
1460
+ "step": 1790
1461
+ },
1462
+ {
1463
+ "epoch": 0.2,
1464
+ "learning_rate": 7.760709454381481e-06,
1465
+ "loss": 1.7534,
1466
+ "step": 1800
1467
+ },
1468
+ {
1469
+ "epoch": 0.2,
1470
+ "learning_rate": 7.757703291748083e-06,
1471
+ "loss": 1.7761,
1472
+ "step": 1810
1473
+ },
1474
+ {
1475
+ "epoch": 0.2,
1476
+ "learning_rate": 7.754697129114685e-06,
1477
+ "loss": 1.7951,
1478
+ "step": 1820
1479
+ },
1480
+ {
1481
+ "epoch": 0.2,
1482
+ "learning_rate": 7.751690966481286e-06,
1483
+ "loss": 1.7287,
1484
+ "step": 1830
1485
+ },
1486
+ {
1487
+ "epoch": 0.2,
1488
+ "learning_rate": 7.748684803847888e-06,
1489
+ "loss": 1.7674,
1490
+ "step": 1840
1491
+ },
1492
+ {
1493
+ "epoch": 0.2,
1494
+ "learning_rate": 7.74567864121449e-06,
1495
+ "loss": 1.7664,
1496
+ "step": 1850
1497
+ },
1498
+ {
1499
+ "epoch": 0.2,
1500
+ "learning_rate": 7.74267247858109e-06,
1501
+ "loss": 1.7569,
1502
+ "step": 1860
1503
+ },
1504
+ {
1505
+ "epoch": 0.2,
1506
+ "learning_rate": 7.739666315947692e-06,
1507
+ "loss": 1.8026,
1508
+ "step": 1870
1509
+ },
1510
+ {
1511
+ "epoch": 0.2,
1512
+ "learning_rate": 7.736960769577633e-06,
1513
+ "loss": 1.7262,
1514
+ "step": 1880
1515
+ },
1516
+ {
1517
+ "epoch": 0.21,
1518
+ "learning_rate": 7.733954606944235e-06,
1519
+ "loss": 1.7266,
1520
+ "step": 1890
1521
+ },
1522
+ {
1523
+ "epoch": 0.21,
1524
+ "learning_rate": 7.730948444310836e-06,
1525
+ "loss": 1.7476,
1526
+ "step": 1900
1527
+ },
1528
+ {
1529
+ "epoch": 0.21,
1530
+ "learning_rate": 7.727942281677438e-06,
1531
+ "loss": 1.7544,
1532
+ "step": 1910
1533
+ },
1534
+ {
1535
+ "epoch": 0.21,
1536
+ "learning_rate": 7.72493611904404e-06,
1537
+ "loss": 1.7859,
1538
+ "step": 1920
1539
+ },
1540
+ {
1541
+ "epoch": 0.21,
1542
+ "learning_rate": 7.721929956410641e-06,
1543
+ "loss": 1.7386,
1544
+ "step": 1930
1545
+ },
1546
+ {
1547
+ "epoch": 0.21,
1548
+ "learning_rate": 7.718923793777243e-06,
1549
+ "loss": 1.7012,
1550
+ "step": 1940
1551
+ },
1552
+ {
1553
+ "epoch": 0.21,
1554
+ "learning_rate": 7.715917631143844e-06,
1555
+ "loss": 1.7736,
1556
+ "step": 1950
1557
+ },
1558
+ {
1559
+ "epoch": 0.21,
1560
+ "learning_rate": 7.712911468510446e-06,
1561
+ "loss": 1.7398,
1562
+ "step": 1960
1563
+ },
1564
+ {
1565
+ "epoch": 0.21,
1566
+ "learning_rate": 7.709905305877047e-06,
1567
+ "loss": 1.8026,
1568
+ "step": 1970
1569
+ },
1570
+ {
1571
+ "epoch": 0.22,
1572
+ "learning_rate": 7.706899143243649e-06,
1573
+ "loss": 1.798,
1574
+ "step": 1980
1575
+ },
1576
+ {
1577
+ "epoch": 0.22,
1578
+ "learning_rate": 7.70389298061025e-06,
1579
+ "loss": 1.802,
1580
+ "step": 1990
1581
+ },
1582
+ {
1583
+ "epoch": 0.22,
1584
+ "learning_rate": 7.700886817976852e-06,
1585
+ "loss": 1.7447,
1586
+ "step": 2000
1587
+ },
1588
+ {
1589
+ "epoch": 0.22,
1590
+ "eval_webgpt_accuracy": 0.48722841158921415,
1591
+ "eval_webgpt_loss": 2.37890625,
1592
+ "eval_webgpt_runtime": 335.1847,
1593
+ "eval_webgpt_samples_per_second": 11.683,
1594
+ "eval_webgpt_steps_per_second": 0.731,
1595
+ "step": 2000
1596
+ },
1597
+ {
1598
+ "epoch": 0.22,
1599
+ "eval_prompt_dialogue_accuracy": 0.5729272869993594,
1600
+ "eval_prompt_dialogue_loss": 1.7509765625,
1601
+ "eval_prompt_dialogue_runtime": 808.5089,
1602
+ "eval_prompt_dialogue_samples_per_second": 12.751,
1603
+ "eval_prompt_dialogue_steps_per_second": 0.798,
1604
+ "step": 2000
1605
+ },
1606
+ {
1607
+ "epoch": 0.22,
1608
+ "eval_squad_v2_accuracy": 0.9350127871125027,
1609
+ "eval_squad_v2_loss": NaN,
1610
+ "eval_squad_v2_runtime": 937.9399,
1611
+ "eval_squad_v2_samples_per_second": 12.659,
1612
+ "eval_squad_v2_steps_per_second": 0.792,
1613
+ "step": 2000
1614
+ },
1615
+ {
1616
+ "epoch": 0.22,
1617
+ "eval_adversarial_qa_accuracy": 0.8308028525419829,
1618
+ "eval_adversarial_qa_loss": 0.7265625,
1619
+ "eval_adversarial_qa_runtime": 238.5652,
1620
+ "eval_adversarial_qa_samples_per_second": 12.575,
1621
+ "eval_adversarial_qa_steps_per_second": 0.788,
1622
+ "step": 2000
1623
+ },
1624
+ {
1625
+ "epoch": 0.22,
1626
+ "eval_trivia_qa_nocontext_accuracy": 0.47783426824006153,
1627
+ "eval_trivia_qa_nocontext_loss": 2.9609375,
1628
+ "eval_trivia_qa_nocontext_runtime": 1249.121,
1629
+ "eval_trivia_qa_nocontext_samples_per_second": 14.365,
1630
+ "eval_trivia_qa_nocontext_steps_per_second": 0.898,
1631
+ "step": 2000
1632
+ },
1633
+ {
1634
+ "epoch": 0.22,
1635
+ "eval_m2m_translation_accuracy": 0.6576231472988909,
1636
+ "eval_m2m_translation_loss": 1.4755859375,
1637
+ "eval_m2m_translation_runtime": 3725.504,
1638
+ "eval_m2m_translation_samples_per_second": 14.206,
1639
+ "eval_m2m_translation_steps_per_second": 0.888,
1640
+ "step": 2000
1641
+ },
1642
+ {
1643
+ "epoch": 0.22,
1644
+ "eval_xsum_accuracy": 0.5862788967827711,
1645
+ "eval_xsum_loss": 1.8447265625,
1646
+ "eval_xsum_runtime": 1007.4241,
1647
+ "eval_xsum_samples_per_second": 11.248,
1648
+ "eval_xsum_steps_per_second": 0.704,
1649
+ "step": 2000
1650
+ },
1651
+ {
1652
+ "epoch": 0.22,
1653
+ "eval_cnn_dailymail_accuracy": 0.6635118400214548,
1654
+ "eval_cnn_dailymail_loss": 1.5224609375,
1655
+ "eval_cnn_dailymail_runtime": 1207.7216,
1656
+ "eval_cnn_dailymail_samples_per_second": 11.069,
1657
+ "eval_cnn_dailymail_steps_per_second": 0.692,
1658
+ "step": 2000
1659
+ },
1660
+ {
1661
+ "epoch": 0.22,
1662
+ "eval_multi_news_accuracy": 0.5254140019732162,
1663
+ "eval_multi_news_loss": 2.271484375,
1664
+ "eval_multi_news_runtime": 511.4499,
1665
+ "eval_multi_news_samples_per_second": 10.992,
1666
+ "eval_multi_news_steps_per_second": 0.688,
1667
+ "step": 2000
1668
+ },
1669
+ {
1670
+ "epoch": 0.22,
1671
+ "eval_scitldr_accuracy": 0.46584969807682547,
1672
+ "eval_scitldr_loss": 2.50390625,
1673
+ "eval_scitldr_runtime": 56.1361,
1674
+ "eval_scitldr_samples_per_second": 11.027,
1675
+ "eval_scitldr_steps_per_second": 0.695,
1676
+ "step": 2000
1677
+ },
1678
+ {
1679
+ "epoch": 0.22,
1680
+ "eval_soda_accuracy": 0.7280997157227204,
1681
+ "eval_soda_loss": 1.1171875,
1682
+ "eval_soda_runtime": 81.9632,
1683
+ "eval_soda_samples_per_second": 12.213,
1684
+ "eval_soda_steps_per_second": 0.769,
1685
+ "step": 2000
1686
+ },
1687
+ {
1688
+ "epoch": 0.22,
1689
+ "eval_joke_accuracy": 0.4692986287011966,
1690
+ "eval_joke_loss": 2.46484375,
1691
+ "eval_joke_runtime": 6.7476,
1692
+ "eval_joke_samples_per_second": 11.263,
1693
+ "eval_joke_steps_per_second": 0.741,
1694
+ "step": 2000
1695
+ },
1696
+ {
1697
+ "epoch": 0.22,
1698
+ "eval_gsm8k_accuracy": 0.8437234667885833,
1699
+ "eval_gsm8k_loss": 0.5634765625,
1700
+ "eval_gsm8k_runtime": 113.7256,
1701
+ "eval_gsm8k_samples_per_second": 11.598,
1702
+ "eval_gsm8k_steps_per_second": 0.73,
1703
+ "step": 2000
1704
+ },
1705
+ {
1706
+ "epoch": 0.22,
1707
+ "eval_samsum_accuracy": 0.6325025008336113,
1708
+ "eval_samsum_loss": 1.4638671875,
1709
+ "eval_samsum_runtime": 72.3462,
1710
+ "eval_samsum_samples_per_second": 11.307,
1711
+ "eval_samsum_steps_per_second": 0.719,
1712
+ "step": 2000
1713
+ }
1714
+ ],
1715
+ "max_steps": 27612,
1716
+ "num_train_epochs": 3,
1717
+ "total_flos": 428521886187520.0,
1718
+ "trial_name": null,
1719
+ "trial_params": null
1720
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:250f3ddd3f36842fe2e5d53c77d84a300a9acbd55b30c6b38e058f6650458b60
3
+ size 4719
zero_to_fp32.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
4
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
5
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
6
+ # application.
7
+ #
8
+ # example: python zero_to_fp32.py . pytorch_model.bin
9
+
10
+ import argparse
11
+ import torch
12
+ import glob
13
+ import math
14
+ import os
15
+ import re
16
+ from collections import OrderedDict
17
+
18
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
19
+ # DeepSpeed data structures it has to be available in the current python environment.
20
+ from deepspeed.utils import logger
21
+ from deepspeed.checkpoint.constants import (DS_VERSION,
22
+ OPTIMIZER_STATE_DICT,
23
+ SINGLE_PARTITION_OF_FP32_GROUPS,
24
+ FP32_FLAT_GROUPS,
25
+ ZERO_STAGE,
26
+ PARTITION_COUNT,
27
+ PARAM_SHAPES,
28
+ BUFFER_NAMES)
29
+
30
+ debug = 0
31
+
32
+ # load to cpu
33
+ device = torch.device('cpu')
34
+
35
+
36
+ def atoi(text):
37
+ return int(text) if text.isdigit() else text
38
+
39
+
40
+ def natural_keys(text):
41
+ '''
42
+ alist.sort(key=natural_keys) sorts in human order
43
+ http://nedbatchelder.com/blog/200712/human_sorting.html
44
+ (See Toothy's implementation in the comments)
45
+ '''
46
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
47
+
48
+
49
+ def get_model_state_file(checkpoint_dir, zero_stage):
50
+ if not os.path.isdir(checkpoint_dir):
51
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
52
+
53
+ # there should be only one file
54
+ if zero_stage == 2:
55
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
56
+ elif zero_stage == 3:
57
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
58
+
59
+ if not os.path.exists(file):
60
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
61
+
62
+ return file
63
+
64
+
65
+ def get_optim_files(checkpoint_dir):
66
+ # XXX: need to test that this simple glob rule works for multi-node setup too
67
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
68
+ "*_optim_states.pt")),
69
+ key=natural_keys)
70
+
71
+ if len(optim_files) == 0:
72
+ raise FileNotFoundError(
73
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
74
+
75
+ return optim_files
76
+
77
+
78
+ def parse_model_state(file):
79
+ state_dict = torch.load(file, map_location=device)
80
+
81
+ if BUFFER_NAMES not in state_dict:
82
+ raise ValueError(f"{file} is not a model state checkpoint")
83
+ buffer_names = state_dict[BUFFER_NAMES]
84
+ if debug:
85
+ print("Found buffers:", buffer_names)
86
+
87
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
88
+ buffers = {
89
+ k: v.float()
90
+ for k,
91
+ v in state_dict["module"].items() if k in buffer_names
92
+ }
93
+ param_shapes = state_dict[PARAM_SHAPES]
94
+
95
+ ds_version = state_dict.get(DS_VERSION, None)
96
+
97
+ return buffers, param_shapes, ds_version
98
+
99
+
100
+ def parse_optim_states(files, ds_checkpoint_dir):
101
+
102
+ total_files = len(files)
103
+ state_dicts = []
104
+ for f in files:
105
+ state_dicts.append(torch.load(f, map_location=device))
106
+
107
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
108
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
109
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
110
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
111
+
112
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
113
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
114
+ # use the max of the partition_count to get the dp world_size.
115
+
116
+ if type(world_size) is list:
117
+ world_size = max(world_size)
118
+
119
+ if world_size != total_files:
120
+ raise ValueError(
121
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
122
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
123
+ )
124
+
125
+ # the groups are named differently in each stage
126
+ if zero_stage == 2:
127
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
128
+ elif zero_stage == 3:
129
+ fp32_groups_key = FP32_FLAT_GROUPS
130
+ else:
131
+ raise ValueError(f"unknown zero stage {zero_stage}")
132
+
133
+ if zero_stage == 2:
134
+ fp32_flat_groups = [
135
+ state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
136
+ for i in range(len(state_dicts))
137
+ ]
138
+ elif zero_stage == 3:
139
+ # if there is more than one param group, there will be multiple flattened tensors - one
140
+ # flattened tensor per group - for simplicity merge them into a single tensor
141
+ #
142
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
143
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
144
+
145
+ fp32_flat_groups = [
146
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
147
+ 0) for i in range(len(state_dicts))
148
+ ]
149
+
150
+ return zero_stage, world_size, fp32_flat_groups
151
+
152
+
153
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
154
+ """
155
+ Returns fp32 state_dict reconstructed from ds checkpoint
156
+
157
+ Args:
158
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
159
+
160
+ """
161
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
162
+
163
+ optim_files = get_optim_files(ds_checkpoint_dir)
164
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
165
+ print(
166
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
167
+
168
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
169
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
170
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
171
+
172
+ if zero_stage == 2:
173
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
174
+ param_shapes,
175
+ fp32_flat_groups,
176
+ buffers)
177
+ elif zero_stage == 3:
178
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
179
+ param_shapes,
180
+ fp32_flat_groups,
181
+ buffers)
182
+
183
+
184
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
185
+ param_shapes,
186
+ fp32_flat_groups,
187
+ buffers):
188
+
189
+ # Reconstruction protocol:
190
+ #
191
+ # XXX: document this
192
+
193
+ if debug:
194
+ for i in range(world_size):
195
+ for j in range(len(fp32_flat_groups[0])):
196
+ print(
197
+ f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
198
+
199
+ # XXX: memory usage doubles here (zero2)
200
+ num_param_groups = len(fp32_flat_groups[0])
201
+ merged_single_partition_of_fp32_groups = []
202
+ for i in range(num_param_groups):
203
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
204
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
205
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
206
+ avail_numel = sum([
207
+ full_single_fp32_vector.numel()
208
+ for full_single_fp32_vector in merged_single_partition_of_fp32_groups
209
+ ])
210
+
211
+ if debug:
212
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
213
+ wanted_numel = sum(
214
+ [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
215
+ # not asserting if there is a mismatch due to possible padding
216
+ print(f"Have {avail_numel} numels to process.")
217
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
218
+
219
+ state_dict = OrderedDict()
220
+
221
+ # buffers
222
+ state_dict.update(buffers)
223
+ if debug:
224
+ print(f"added {len(buffers)} buffers")
225
+
226
+ # params
227
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
228
+ # out-of-core computing solution
229
+ total_numel = 0
230
+ total_params = 0
231
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
232
+ offset = 0
233
+ avail_numel = full_single_fp32_vector.numel()
234
+ for name, shape in shapes.items():
235
+
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+ total_params += 1
239
+
240
+ if debug:
241
+ print(
242
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
243
+ )
244
+ state_dict[name] = full_single_fp32_vector.narrow(
245
+ 0,
246
+ offset,
247
+ unpartitioned_numel).view(shape)
248
+ offset += unpartitioned_numel
249
+
250
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
251
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
252
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
253
+ # live optimizer object, so we are checking that the numbers are within the right range
254
+ align_to = 2 * world_size
255
+
256
+ def zero2_align(x):
257
+ return align_to * math.ceil(x / align_to)
258
+
259
+ if debug:
260
+ print(f"original offset={offset}, avail_numel={avail_numel}")
261
+
262
+ offset = zero2_align(offset)
263
+ avail_numel = zero2_align(avail_numel)
264
+
265
+ if debug:
266
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
267
+
268
+ # Sanity check
269
+ if offset != avail_numel:
270
+ raise ValueError(
271
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
272
+
273
+ print(
274
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
275
+ )
276
+
277
+ return state_dict
278
+
279
+
280
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
281
+ remainder = unpartitioned_numel % world_size
282
+ padding_numel = (world_size - remainder) if remainder else 0
283
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
284
+ return partitioned_numel, padding_numel
285
+
286
+
287
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
288
+ param_shapes,
289
+ fp32_flat_groups,
290
+ buffers):
291
+
292
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
293
+ # param, re-consolidating each param, while dealing with padding if any
294
+
295
+ avail_numel = fp32_flat_groups[0].numel() * world_size
296
+ # merge list of dicts, preserving order
297
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
298
+
299
+ if debug:
300
+ for i in range(world_size):
301
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
302
+
303
+ wanted_params = len(param_shapes)
304
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
305
+ # not asserting if there is a mismatch due to possible padding
306
+ print(f"Have {avail_numel} numels to process.")
307
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
308
+
309
+ state_dict = OrderedDict()
310
+
311
+ # buffers
312
+ state_dict.update(buffers)
313
+ if debug:
314
+ print(f"added {len(buffers)} buffers")
315
+
316
+ # params
317
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
318
+ # out-of-core computing solution
319
+ offset = 0
320
+ total_numel = 0
321
+ total_params = 0
322
+ for name, shape in param_shapes.items():
323
+
324
+ unpartitioned_numel = shape.numel()
325
+ total_numel += unpartitioned_numel
326
+ total_params += 1
327
+
328
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
329
+
330
+ if debug:
331
+ print(
332
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
333
+ )
334
+
335
+ # XXX: memory usage doubles here
336
+ state_dict[name] = torch.cat(
337
+ tuple(fp32_flat_groups[i].narrow(0,
338
+ offset,
339
+ partitioned_numel)
340
+ for i in range(world_size)),
341
+ 0).narrow(0,
342
+ 0,
343
+ unpartitioned_numel).view(shape)
344
+ offset += partitioned_numel
345
+
346
+ offset *= world_size
347
+
348
+ # Sanity check
349
+ if offset != avail_numel:
350
+ raise ValueError(
351
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
352
+
353
+ print(
354
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
355
+ )
356
+
357
+ return state_dict
358
+
359
+
360
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
361
+ """
362
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
363
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
364
+ via a model hub.
365
+
366
+ Args:
367
+ - ``checkpoint_dir``: path to the desired checkpoint folder
368
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
369
+
370
+ Returns:
371
+ - pytorch ``state_dict``
372
+
373
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
374
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
375
+ the checkpoint.
376
+
377
+ A typical usage might be ::
378
+
379
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
380
+ # do the training and checkpoint saving
381
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
382
+ model = model.cpu() # move to cpu
383
+ model.load_state_dict(state_dict)
384
+ # submit to model hub or save the model to share with others
385
+
386
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
387
+ application. i.e. you will need to re-initialize the deepspeed engine, since
388
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
389
+
390
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
391
+
392
+ """
393
+ if tag is None:
394
+ latest_path = os.path.join(checkpoint_dir, 'latest')
395
+ if os.path.isfile(latest_path):
396
+ with open(latest_path, 'r') as fd:
397
+ tag = fd.read().strip()
398
+ else:
399
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
400
+
401
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
402
+
403
+ if not os.path.isdir(ds_checkpoint_dir):
404
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
405
+
406
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
407
+
408
+
409
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
410
+ """
411
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
412
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
413
+
414
+ Args:
415
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
416
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
417
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
418
+ """
419
+
420
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
421
+ print(f"Saving fp32 state dict to {output_file}")
422
+ torch.save(state_dict, output_file)
423
+
424
+
425
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
426
+ """
427
+ 1. Put the provided model to cpu
428
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
429
+ 3. Load it into the provided model
430
+
431
+ Args:
432
+ - ``model``: the model object to update
433
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
434
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
435
+
436
+ Returns:
437
+ - ``model`: modified model
438
+
439
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
440
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
441
+ conveniently placed for you in the checkpoint folder.
442
+
443
+ A typical usage might be ::
444
+
445
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
446
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
447
+ # submit to model hub or save the model to share with others
448
+
449
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
450
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
451
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
452
+
453
+ """
454
+ logger.info(f"Extracting fp32 weights")
455
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
456
+
457
+ logger.info(f"Overwriting model with fp32 weights")
458
+ model = model.cpu()
459
+ model.load_state_dict(state_dict, strict=False)
460
+
461
+ return model
462
+
463
+
464
+ if __name__ == "__main__":
465
+
466
+ parser = argparse.ArgumentParser()
467
+ parser.add_argument(
468
+ "checkpoint_dir",
469
+ type=str,
470
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
471
+ parser.add_argument(
472
+ "output_file",
473
+ type=str,
474
+ help=
475
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
476
+ )
477
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
478
+ args = parser.parse_args()
479
+
480
+ debug = args.debug
481
+
482
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)