theblackcat102
commited on
Commit
•
bdf5de5
1
Parent(s):
7cf10f8
Upload 8 files
Browse files- config.json +32 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +10 -0
- tokenizer.json +0 -0
- tokenizer_config.json +6 -0
- trainer_state.json +1720 -0
- training_args.bin +3 -0
- zero_to_fp32.py +482 -0
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/galactica-1.3b",
|
3 |
+
"_remove_final_layer_norm": false,
|
4 |
+
"activation_dropout": 0.0,
|
5 |
+
"activation_function": "gelu",
|
6 |
+
"architectures": [
|
7 |
+
"OPTForCausalLM"
|
8 |
+
],
|
9 |
+
"attention_dropout": 0.1,
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"do_layer_norm_before": true,
|
12 |
+
"dropout": 0.1,
|
13 |
+
"enable_bias": true,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"ffn_dim": 8192,
|
16 |
+
"hidden_size": 2048,
|
17 |
+
"init_std": 0.02,
|
18 |
+
"layer_norm_elementwise_affine": true,
|
19 |
+
"layerdrop": 0.0,
|
20 |
+
"learned_embeddings": true,
|
21 |
+
"max_position_embeddings": 2048,
|
22 |
+
"model_type": "opt",
|
23 |
+
"num_attention_heads": 32,
|
24 |
+
"num_hidden_layers": 24,
|
25 |
+
"pad_token_id": 1,
|
26 |
+
"scale_embeddings": false,
|
27 |
+
"torch_dtype": "float16",
|
28 |
+
"transformers_version": "4.25.1",
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 50004,
|
31 |
+
"word_embed_proj_dim": 2048
|
32 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ce076ed29967ad92e44f5866f1e11c519d72ad0277f3192f737a480201f512b
|
3 |
+
size 2630541561
|
special_tokens_map.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<bot>",
|
4 |
+
"<human>",
|
5 |
+
"</prefix>",
|
6 |
+
"<prefix>"
|
7 |
+
],
|
8 |
+
"eos_token": "</s>",
|
9 |
+
"pad_token": "<pad>"
|
10 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_max_length": 1000000000000000019884624838656,
|
3 |
+
"name_or_path": "facebook/galactica-1.3b",
|
4 |
+
"special_tokens_map_file": "/content/tokenizer/special_tokens_map.json",
|
5 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
6 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1720 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.217287974468663,
|
5 |
+
"global_step": 2000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 2.666666666666667e-06,
|
13 |
+
"loss": 2.5689,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 3.410009602540877e-06,
|
19 |
+
"loss": 2.2872,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.0,
|
24 |
+
"learning_rate": 3.899727994397217e-06,
|
25 |
+
"loss": 2.2045,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.0,
|
30 |
+
"learning_rate": 4.242838952070665e-06,
|
31 |
+
"loss": 2.1665,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.01,
|
36 |
+
"learning_rate": 4.507189546742703e-06,
|
37 |
+
"loss": 2.0691,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01,
|
42 |
+
"learning_rate": 4.722272031045718e-06,
|
43 |
+
"loss": 2.0554,
|
44 |
+
"step": 60
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"learning_rate": 4.9035975752993475e-06,
|
49 |
+
"loss": 2.0278,
|
50 |
+
"step": 70
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.01,
|
54 |
+
"learning_rate": 5.060338910107844e-06,
|
55 |
+
"loss": 2.0495,
|
56 |
+
"step": 80
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.01,
|
60 |
+
"learning_rate": 5.1983733510531e-06,
|
61 |
+
"loss": 2.0476,
|
62 |
+
"step": 90
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.01,
|
66 |
+
"learning_rate": 5.3216938522601335e-06,
|
67 |
+
"loss": 2.0547,
|
68 |
+
"step": 100
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.01,
|
72 |
+
"learning_rate": 5.433137327841662e-06,
|
73 |
+
"loss": 1.992,
|
74 |
+
"step": 110
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.01,
|
78 |
+
"learning_rate": 5.534791897046749e-06,
|
79 |
+
"loss": 2.0016,
|
80 |
+
"step": 120
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.01,
|
84 |
+
"learning_rate": 5.6282392274646635e-06,
|
85 |
+
"loss": 2.0251,
|
86 |
+
"step": 130
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.02,
|
90 |
+
"learning_rate": 5.71470613401092e-06,
|
91 |
+
"loss": 1.9642,
|
92 |
+
"step": 140
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.02,
|
96 |
+
"learning_rate": 5.795163382432731e-06,
|
97 |
+
"loss": 1.9489,
|
98 |
+
"step": 150
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.02,
|
102 |
+
"learning_rate": 5.870392331521204e-06,
|
103 |
+
"loss": 1.9492,
|
104 |
+
"step": 160
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.02,
|
108 |
+
"learning_rate": 5.941031212303129e-06,
|
109 |
+
"loss": 1.9794,
|
110 |
+
"step": 170
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.02,
|
114 |
+
"learning_rate": 6.007608082613048e-06,
|
115 |
+
"loss": 1.9443,
|
116 |
+
"step": 180
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.02,
|
120 |
+
"learning_rate": 6.070564811128651e-06,
|
121 |
+
"loss": 1.9561,
|
122 |
+
"step": 190
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.02,
|
126 |
+
"learning_rate": 6.130274870425884e-06,
|
127 |
+
"loss": 1.9445,
|
128 |
+
"step": 200
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.02,
|
132 |
+
"learning_rate": 6.187056762962811e-06,
|
133 |
+
"loss": 1.9922,
|
134 |
+
"step": 210
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.02,
|
138 |
+
"learning_rate": 6.241184306240316e-06,
|
139 |
+
"loss": 1.9092,
|
140 |
+
"step": 220
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.02,
|
144 |
+
"learning_rate": 6.292894619573035e-06,
|
145 |
+
"loss": 1.9877,
|
146 |
+
"step": 230
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.03,
|
150 |
+
"learning_rate": 6.3423944025283676e-06,
|
151 |
+
"loss": 1.9013,
|
152 |
+
"step": 240
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.03,
|
156 |
+
"learning_rate": 6.385204482203244e-06,
|
157 |
+
"loss": 1.9351,
|
158 |
+
"step": 250
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.03,
|
162 |
+
"learning_rate": 6.430985882568613e-06,
|
163 |
+
"loss": 1.9364,
|
164 |
+
"step": 260
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.03,
|
168 |
+
"learning_rate": 6.475026117410103e-06,
|
169 |
+
"loss": 1.9298,
|
170 |
+
"step": 270
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.03,
|
174 |
+
"learning_rate": 6.51745278911487e-06,
|
175 |
+
"loss": 1.9262,
|
176 |
+
"step": 280
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.03,
|
180 |
+
"learning_rate": 6.55837996735795e-06,
|
181 |
+
"loss": 1.9245,
|
182 |
+
"step": 290
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.03,
|
186 |
+
"learning_rate": 6.597910037536681e-06,
|
187 |
+
"loss": 1.9264,
|
188 |
+
"step": 300
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.03,
|
192 |
+
"learning_rate": 6.6361352440011835e-06,
|
193 |
+
"loss": 1.9318,
|
194 |
+
"step": 310
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.03,
|
198 |
+
"learning_rate": 6.673138986625154e-06,
|
199 |
+
"loss": 1.8992,
|
200 |
+
"step": 320
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.04,
|
204 |
+
"learning_rate": 6.708996916564478e-06,
|
205 |
+
"loss": 1.8958,
|
206 |
+
"step": 330
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.04,
|
210 |
+
"learning_rate": 6.74377786740708e-06,
|
211 |
+
"loss": 1.9317,
|
212 |
+
"step": 340
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04,
|
216 |
+
"learning_rate": 6.777544650524216e-06,
|
217 |
+
"loss": 1.8891,
|
218 |
+
"step": 350
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.04,
|
222 |
+
"learning_rate": 6.810354737716999e-06,
|
223 |
+
"loss": 1.8944,
|
224 |
+
"step": 360
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.04,
|
228 |
+
"learning_rate": 6.842260849796047e-06,
|
229 |
+
"loss": 1.8904,
|
230 |
+
"step": 370
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.04,
|
234 |
+
"learning_rate": 6.873311466232601e-06,
|
235 |
+
"loss": 1.9326,
|
236 |
+
"step": 380
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.04,
|
240 |
+
"learning_rate": 6.903551268251219e-06,
|
241 |
+
"loss": 1.8795,
|
242 |
+
"step": 390
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.04,
|
246 |
+
"learning_rate": 6.933021525529835e-06,
|
247 |
+
"loss": 1.8729,
|
248 |
+
"step": 400
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.04,
|
252 |
+
"learning_rate": 6.961760434906346e-06,
|
253 |
+
"loss": 1.861,
|
254 |
+
"step": 410
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.05,
|
258 |
+
"learning_rate": 6.9898034180667605e-06,
|
259 |
+
"loss": 1.9003,
|
260 |
+
"step": 420
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.05,
|
264 |
+
"learning_rate": 7.017183384035125e-06,
|
265 |
+
"loss": 1.9061,
|
266 |
+
"step": 430
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.05,
|
270 |
+
"learning_rate": 7.043930961344266e-06,
|
271 |
+
"loss": 1.9146,
|
272 |
+
"step": 440
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.05,
|
276 |
+
"learning_rate": 7.07007470399505e-06,
|
277 |
+
"loss": 1.8741,
|
278 |
+
"step": 450
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.05,
|
282 |
+
"learning_rate": 7.095641274676984e-06,
|
283 |
+
"loss": 1.8402,
|
284 |
+
"step": 460
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.05,
|
288 |
+
"learning_rate": 7.120655608197665e-06,
|
289 |
+
"loss": 1.9109,
|
290 |
+
"step": 470
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.05,
|
294 |
+
"learning_rate": 7.145141057632318e-06,
|
295 |
+
"loss": 1.8829,
|
296 |
+
"step": 480
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.05,
|
300 |
+
"learning_rate": 7.169119525340562e-06,
|
301 |
+
"loss": 1.8557,
|
302 |
+
"step": 490
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.05,
|
306 |
+
"learning_rate": 7.19261158069258e-06,
|
307 |
+
"loss": 1.8577,
|
308 |
+
"step": 500
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.05,
|
312 |
+
"eval_webgpt_accuracy": 0.4847224518236187,
|
313 |
+
"eval_webgpt_loss": 2.392578125,
|
314 |
+
"eval_webgpt_runtime": 337.627,
|
315 |
+
"eval_webgpt_samples_per_second": 11.599,
|
316 |
+
"eval_webgpt_steps_per_second": 0.726,
|
317 |
+
"step": 500
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.05,
|
321 |
+
"eval_prompt_dialogue_accuracy": 0.5612746203747981,
|
322 |
+
"eval_prompt_dialogue_loss": 1.828125,
|
323 |
+
"eval_prompt_dialogue_runtime": 811.1162,
|
324 |
+
"eval_prompt_dialogue_samples_per_second": 12.71,
|
325 |
+
"eval_prompt_dialogue_steps_per_second": 0.795,
|
326 |
+
"step": 500
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.05,
|
330 |
+
"eval_squad_v2_accuracy": 0.9115060111379335,
|
331 |
+
"eval_squad_v2_loss": NaN,
|
332 |
+
"eval_squad_v2_runtime": 941.3453,
|
333 |
+
"eval_squad_v2_samples_per_second": 12.613,
|
334 |
+
"eval_squad_v2_steps_per_second": 0.789,
|
335 |
+
"step": 500
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.05,
|
339 |
+
"eval_adversarial_qa_accuracy": 0.8083160800552105,
|
340 |
+
"eval_adversarial_qa_loss": 0.86083984375,
|
341 |
+
"eval_adversarial_qa_runtime": 238.8648,
|
342 |
+
"eval_adversarial_qa_samples_per_second": 12.559,
|
343 |
+
"eval_adversarial_qa_steps_per_second": 0.787,
|
344 |
+
"step": 500
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.05,
|
348 |
+
"eval_trivia_qa_nocontext_accuracy": 0.45998188422713815,
|
349 |
+
"eval_trivia_qa_nocontext_loss": 3.12890625,
|
350 |
+
"eval_trivia_qa_nocontext_runtime": 1249.2124,
|
351 |
+
"eval_trivia_qa_nocontext_samples_per_second": 14.364,
|
352 |
+
"eval_trivia_qa_nocontext_steps_per_second": 0.898,
|
353 |
+
"step": 500
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.05,
|
357 |
+
"eval_m2m_translation_accuracy": 0.5733300105250808,
|
358 |
+
"eval_m2m_translation_loss": 1.8857421875,
|
359 |
+
"eval_m2m_translation_runtime": 3725.0595,
|
360 |
+
"eval_m2m_translation_samples_per_second": 14.208,
|
361 |
+
"eval_m2m_translation_steps_per_second": 0.888,
|
362 |
+
"step": 500
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.05,
|
366 |
+
"eval_xsum_accuracy": 0.5671291686677834,
|
367 |
+
"eval_xsum_loss": 1.9658203125,
|
368 |
+
"eval_xsum_runtime": 1011.0399,
|
369 |
+
"eval_xsum_samples_per_second": 11.208,
|
370 |
+
"eval_xsum_steps_per_second": 0.701,
|
371 |
+
"step": 500
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.05,
|
375 |
+
"eval_cnn_dailymail_accuracy": 0.6565405592058271,
|
376 |
+
"eval_cnn_dailymail_loss": 1.5810546875,
|
377 |
+
"eval_cnn_dailymail_runtime": 1213.6108,
|
378 |
+
"eval_cnn_dailymail_samples_per_second": 11.015,
|
379 |
+
"eval_cnn_dailymail_steps_per_second": 0.689,
|
380 |
+
"step": 500
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.05,
|
384 |
+
"eval_multi_news_accuracy": 0.5175576159426271,
|
385 |
+
"eval_multi_news_loss": 2.33203125,
|
386 |
+
"eval_multi_news_runtime": 512.3687,
|
387 |
+
"eval_multi_news_samples_per_second": 10.973,
|
388 |
+
"eval_multi_news_steps_per_second": 0.687,
|
389 |
+
"step": 500
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.05,
|
393 |
+
"eval_scitldr_accuracy": 0.46241087965899574,
|
394 |
+
"eval_scitldr_loss": 2.5234375,
|
395 |
+
"eval_scitldr_runtime": 57.2333,
|
396 |
+
"eval_scitldr_samples_per_second": 10.815,
|
397 |
+
"eval_scitldr_steps_per_second": 0.681,
|
398 |
+
"step": 500
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.05,
|
402 |
+
"eval_soda_accuracy": 0.7121364530942489,
|
403 |
+
"eval_soda_loss": 1.21484375,
|
404 |
+
"eval_soda_runtime": 82.3256,
|
405 |
+
"eval_soda_samples_per_second": 12.159,
|
406 |
+
"eval_soda_steps_per_second": 0.765,
|
407 |
+
"step": 500
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.05,
|
411 |
+
"eval_joke_accuracy": 0.454450170320552,
|
412 |
+
"eval_joke_loss": 2.62109375,
|
413 |
+
"eval_joke_runtime": 6.9296,
|
414 |
+
"eval_joke_samples_per_second": 10.967,
|
415 |
+
"eval_joke_steps_per_second": 0.722,
|
416 |
+
"step": 500
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.05,
|
420 |
+
"eval_gsm8k_accuracy": 0.8305793220560381,
|
421 |
+
"eval_gsm8k_loss": 0.61328125,
|
422 |
+
"eval_gsm8k_runtime": 113.5097,
|
423 |
+
"eval_gsm8k_samples_per_second": 11.62,
|
424 |
+
"eval_gsm8k_steps_per_second": 0.731,
|
425 |
+
"step": 500
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.05,
|
429 |
+
"eval_samsum_accuracy": 0.6179719084733047,
|
430 |
+
"eval_samsum_loss": 1.5537109375,
|
431 |
+
"eval_samsum_runtime": 73.3198,
|
432 |
+
"eval_samsum_samples_per_second": 11.157,
|
433 |
+
"eval_samsum_steps_per_second": 0.709,
|
434 |
+
"step": 500
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.06,
|
438 |
+
"learning_rate": 7.215636566090451e-06,
|
439 |
+
"loss": 1.8655,
|
440 |
+
"step": 510
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.06,
|
444 |
+
"learning_rate": 7.238212692653954e-06,
|
445 |
+
"loss": 1.9284,
|
446 |
+
"step": 520
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.06,
|
450 |
+
"learning_rate": 7.260357126756832e-06,
|
451 |
+
"loss": 1.8522,
|
452 |
+
"step": 530
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.06,
|
456 |
+
"learning_rate": 7.282086068443704e-06,
|
457 |
+
"loss": 1.8869,
|
458 |
+
"step": 540
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.06,
|
462 |
+
"learning_rate": 7.303414822624985e-06,
|
463 |
+
"loss": 1.905,
|
464 |
+
"step": 550
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.06,
|
468 |
+
"learning_rate": 7.324357863833543e-06,
|
469 |
+
"loss": 1.8483,
|
470 |
+
"step": 560
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.06,
|
474 |
+
"learning_rate": 7.344928895229384e-06,
|
475 |
+
"loss": 1.8628,
|
476 |
+
"step": 570
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.06,
|
480 |
+
"learning_rate": 7.365140902454744e-06,
|
481 |
+
"loss": 1.8982,
|
482 |
+
"step": 580
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.06,
|
486 |
+
"learning_rate": 7.385006202869703e-06,
|
487 |
+
"loss": 1.834,
|
488 |
+
"step": 590
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.07,
|
492 |
+
"learning_rate": 7.404536490635762e-06,
|
493 |
+
"loss": 1.8488,
|
494 |
+
"step": 600
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.07,
|
498 |
+
"learning_rate": 7.423742878060626e-06,
|
499 |
+
"loss": 1.8585,
|
500 |
+
"step": 610
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.07,
|
504 |
+
"learning_rate": 7.442635933570175e-06,
|
505 |
+
"loss": 1.8292,
|
506 |
+
"step": 620
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.07,
|
510 |
+
"learning_rate": 7.461225716632522e-06,
|
511 |
+
"loss": 1.8399,
|
512 |
+
"step": 630
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.07,
|
516 |
+
"learning_rate": 7.479521809923099e-06,
|
517 |
+
"loss": 1.8775,
|
518 |
+
"step": 640
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.07,
|
522 |
+
"learning_rate": 7.497533348988249e-06,
|
523 |
+
"loss": 1.8593,
|
524 |
+
"step": 650
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.07,
|
528 |
+
"learning_rate": 7.515269049637215e-06,
|
529 |
+
"loss": 1.8557,
|
530 |
+
"step": 660
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.07,
|
534 |
+
"learning_rate": 7.532737233268121e-06,
|
535 |
+
"loss": 1.8427,
|
536 |
+
"step": 670
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.07,
|
540 |
+
"learning_rate": 7.5499458503121685e-06,
|
541 |
+
"loss": 1.859,
|
542 |
+
"step": 680
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.07,
|
546 |
+
"learning_rate": 7.566902501961364e-06,
|
547 |
+
"loss": 1.8111,
|
548 |
+
"step": 690
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.08,
|
552 |
+
"learning_rate": 7.5836144603284295e-06,
|
553 |
+
"loss": 1.8246,
|
554 |
+
"step": 700
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.08,
|
558 |
+
"learning_rate": 7.600088687172717e-06,
|
559 |
+
"loss": 1.8613,
|
560 |
+
"step": 710
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.08,
|
564 |
+
"learning_rate": 7.616331851312801e-06,
|
565 |
+
"loss": 1.8478,
|
566 |
+
"step": 720
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.08,
|
570 |
+
"learning_rate": 7.632350344834765e-06,
|
571 |
+
"loss": 1.8839,
|
572 |
+
"step": 730
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.08,
|
576 |
+
"learning_rate": 7.648150298194777e-06,
|
577 |
+
"loss": 1.8625,
|
578 |
+
"step": 740
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.08,
|
582 |
+
"learning_rate": 7.663737594305231e-06,
|
583 |
+
"loss": 1.8291,
|
584 |
+
"step": 750
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.08,
|
588 |
+
"learning_rate": 7.679117881685476e-06,
|
589 |
+
"loss": 1.836,
|
590 |
+
"step": 760
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.08,
|
594 |
+
"learning_rate": 7.6942965867507e-06,
|
595 |
+
"loss": 1.8102,
|
596 |
+
"step": 770
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.08,
|
600 |
+
"learning_rate": 7.709278925305836e-06,
|
601 |
+
"loss": 1.8353,
|
602 |
+
"step": 780
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.09,
|
606 |
+
"learning_rate": 7.72406991330548e-06,
|
607 |
+
"loss": 1.8713,
|
608 |
+
"step": 790
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.09,
|
612 |
+
"learning_rate": 7.738674376935279e-06,
|
613 |
+
"loss": 1.8314,
|
614 |
+
"step": 800
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.09,
|
618 |
+
"learning_rate": 7.753096962065562e-06,
|
619 |
+
"loss": 1.8553,
|
620 |
+
"step": 810
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.09,
|
624 |
+
"learning_rate": 7.767342143123527e-06,
|
625 |
+
"loss": 1.8318,
|
626 |
+
"step": 820
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.09,
|
630 |
+
"learning_rate": 7.781414231426347e-06,
|
631 |
+
"loss": 1.8401,
|
632 |
+
"step": 830
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.09,
|
636 |
+
"learning_rate": 7.79531738301407e-06,
|
637 |
+
"loss": 1.8108,
|
638 |
+
"step": 840
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.09,
|
642 |
+
"learning_rate": 7.809055606017904e-06,
|
643 |
+
"loss": 1.8563,
|
644 |
+
"step": 850
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.09,
|
648 |
+
"learning_rate": 7.822632767596549e-06,
|
649 |
+
"loss": 1.8408,
|
650 |
+
"step": 860
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.09,
|
654 |
+
"learning_rate": 7.836052600470646e-06,
|
655 |
+
"loss": 1.8096,
|
656 |
+
"step": 870
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.1,
|
660 |
+
"learning_rate": 7.849318709082941e-06,
|
661 |
+
"loss": 1.8264,
|
662 |
+
"step": 880
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.1,
|
666 |
+
"learning_rate": 7.862434575409602e-06,
|
667 |
+
"loss": 1.8902,
|
668 |
+
"step": 890
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.1,
|
672 |
+
"learning_rate": 7.875403564446145e-06,
|
673 |
+
"loss": 1.7953,
|
674 |
+
"step": 900
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.1,
|
678 |
+
"learning_rate": 7.888228929389561e-06,
|
679 |
+
"loss": 1.837,
|
680 |
+
"step": 910
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.1,
|
684 |
+
"learning_rate": 7.900913816536647e-06,
|
685 |
+
"loss": 1.7704,
|
686 |
+
"step": 920
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.1,
|
690 |
+
"learning_rate": 7.913461269916965e-06,
|
691 |
+
"loss": 1.8251,
|
692 |
+
"step": 930
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.1,
|
696 |
+
"learning_rate": 7.925874235677506e-06,
|
697 |
+
"loss": 1.8294,
|
698 |
+
"step": 940
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.1,
|
702 |
+
"learning_rate": 7.938155566234842e-06,
|
703 |
+
"loss": 1.8306,
|
704 |
+
"step": 950
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.1,
|
708 |
+
"learning_rate": 7.950308024209451e-06,
|
709 |
+
"loss": 1.7889,
|
710 |
+
"step": 960
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.11,
|
714 |
+
"learning_rate": 7.962334286155715e-06,
|
715 |
+
"loss": 1.7922,
|
716 |
+
"step": 970
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.11,
|
720 |
+
"learning_rate": 7.974236946100272e-06,
|
721 |
+
"loss": 1.7679,
|
722 |
+
"step": 980
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.11,
|
726 |
+
"learning_rate": 7.986018518900343e-06,
|
727 |
+
"loss": 1.8068,
|
728 |
+
"step": 990
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.11,
|
732 |
+
"learning_rate": 7.997681443432989e-06,
|
733 |
+
"loss": 1.8467,
|
734 |
+
"step": 1000
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.11,
|
738 |
+
"eval_webgpt_accuracy": 0.4853852488269729,
|
739 |
+
"eval_webgpt_loss": 2.388671875,
|
740 |
+
"eval_webgpt_runtime": 337.66,
|
741 |
+
"eval_webgpt_samples_per_second": 11.597,
|
742 |
+
"eval_webgpt_steps_per_second": 0.726,
|
743 |
+
"step": 1000
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 0.11,
|
747 |
+
"eval_prompt_dialogue_accuracy": 0.5656945584798752,
|
748 |
+
"eval_prompt_dialogue_loss": 1.7978515625,
|
749 |
+
"eval_prompt_dialogue_runtime": 810.7166,
|
750 |
+
"eval_prompt_dialogue_samples_per_second": 12.716,
|
751 |
+
"eval_prompt_dialogue_steps_per_second": 0.796,
|
752 |
+
"step": 1000
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.11,
|
756 |
+
"eval_squad_v2_accuracy": 0.929180907765482,
|
757 |
+
"eval_squad_v2_loss": NaN,
|
758 |
+
"eval_squad_v2_runtime": 942.6897,
|
759 |
+
"eval_squad_v2_samples_per_second": 12.595,
|
760 |
+
"eval_squad_v2_steps_per_second": 0.788,
|
761 |
+
"step": 1000
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.11,
|
765 |
+
"eval_adversarial_qa_accuracy": 0.8106740280653324,
|
766 |
+
"eval_adversarial_qa_loss": 0.8291015625,
|
767 |
+
"eval_adversarial_qa_runtime": 239.9039,
|
768 |
+
"eval_adversarial_qa_samples_per_second": 12.505,
|
769 |
+
"eval_adversarial_qa_steps_per_second": 0.784,
|
770 |
+
"step": 1000
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.11,
|
774 |
+
"eval_trivia_qa_nocontext_accuracy": 0.46837345154352583,
|
775 |
+
"eval_trivia_qa_nocontext_loss": 3.052734375,
|
776 |
+
"eval_trivia_qa_nocontext_runtime": 1248.9886,
|
777 |
+
"eval_trivia_qa_nocontext_samples_per_second": 14.367,
|
778 |
+
"eval_trivia_qa_nocontext_steps_per_second": 0.898,
|
779 |
+
"step": 1000
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.11,
|
783 |
+
"eval_m2m_translation_accuracy": 0.6128791362753888,
|
784 |
+
"eval_m2m_translation_loss": 1.6904296875,
|
785 |
+
"eval_m2m_translation_runtime": 3724.3046,
|
786 |
+
"eval_m2m_translation_samples_per_second": 14.21,
|
787 |
+
"eval_m2m_translation_steps_per_second": 0.888,
|
788 |
+
"step": 1000
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.11,
|
792 |
+
"eval_xsum_accuracy": 0.576201200101912,
|
793 |
+
"eval_xsum_loss": 1.90625,
|
794 |
+
"eval_xsum_runtime": 1013.837,
|
795 |
+
"eval_xsum_samples_per_second": 11.177,
|
796 |
+
"eval_xsum_steps_per_second": 0.699,
|
797 |
+
"step": 1000
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.11,
|
801 |
+
"eval_cnn_dailymail_accuracy": 0.6590085257947359,
|
802 |
+
"eval_cnn_dailymail_loss": 1.5537109375,
|
803 |
+
"eval_cnn_dailymail_runtime": 1212.8269,
|
804 |
+
"eval_cnn_dailymail_samples_per_second": 11.022,
|
805 |
+
"eval_cnn_dailymail_steps_per_second": 0.689,
|
806 |
+
"step": 1000
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.11,
|
810 |
+
"eval_multi_news_accuracy": 0.5213214574389622,
|
811 |
+
"eval_multi_news_loss": 2.302734375,
|
812 |
+
"eval_multi_news_runtime": 514.4889,
|
813 |
+
"eval_multi_news_samples_per_second": 10.927,
|
814 |
+
"eval_multi_news_steps_per_second": 0.684,
|
815 |
+
"step": 1000
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.11,
|
819 |
+
"eval_scitldr_accuracy": 0.4667123357182727,
|
820 |
+
"eval_scitldr_loss": 2.50390625,
|
821 |
+
"eval_scitldr_runtime": 55.8523,
|
822 |
+
"eval_scitldr_samples_per_second": 11.083,
|
823 |
+
"eval_scitldr_steps_per_second": 0.698,
|
824 |
+
"step": 1000
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.11,
|
828 |
+
"eval_soda_accuracy": 0.7221954952984911,
|
829 |
+
"eval_soda_loss": 1.1513671875,
|
830 |
+
"eval_soda_runtime": 82.1743,
|
831 |
+
"eval_soda_samples_per_second": 12.181,
|
832 |
+
"eval_soda_steps_per_second": 0.767,
|
833 |
+
"step": 1000
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 0.11,
|
837 |
+
"eval_joke_accuracy": 0.45549829679447984,
|
838 |
+
"eval_joke_loss": 2.5625,
|
839 |
+
"eval_joke_runtime": 7.1872,
|
840 |
+
"eval_joke_samples_per_second": 10.574,
|
841 |
+
"eval_joke_steps_per_second": 0.696,
|
842 |
+
"step": 1000
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.11,
|
846 |
+
"eval_gsm8k_accuracy": 0.836947292796029,
|
847 |
+
"eval_gsm8k_loss": 0.591796875,
|
848 |
+
"eval_gsm8k_runtime": 112.7859,
|
849 |
+
"eval_gsm8k_samples_per_second": 11.695,
|
850 |
+
"eval_gsm8k_steps_per_second": 0.736,
|
851 |
+
"step": 1000
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.11,
|
855 |
+
"eval_samsum_accuracy": 0.6263182026593306,
|
856 |
+
"eval_samsum_loss": 1.5126953125,
|
857 |
+
"eval_samsum_runtime": 73.6542,
|
858 |
+
"eval_samsum_samples_per_second": 11.106,
|
859 |
+
"eval_samsum_steps_per_second": 0.706,
|
860 |
+
"step": 1000
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.11,
|
864 |
+
"learning_rate": 7.997895686156621e-06,
|
865 |
+
"loss": 1.8114,
|
866 |
+
"step": 1010
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.11,
|
870 |
+
"learning_rate": 7.994889523523223e-06,
|
871 |
+
"loss": 1.857,
|
872 |
+
"step": 1020
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.11,
|
876 |
+
"learning_rate": 7.991883360889824e-06,
|
877 |
+
"loss": 1.8195,
|
878 |
+
"step": 1030
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.11,
|
882 |
+
"learning_rate": 7.988877198256426e-06,
|
883 |
+
"loss": 1.8101,
|
884 |
+
"step": 1040
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.11,
|
888 |
+
"learning_rate": 7.985871035623028e-06,
|
889 |
+
"loss": 1.8169,
|
890 |
+
"step": 1050
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.12,
|
894 |
+
"learning_rate": 7.982864872989627e-06,
|
895 |
+
"loss": 1.8414,
|
896 |
+
"step": 1060
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.12,
|
900 |
+
"learning_rate": 7.979858710356229e-06,
|
901 |
+
"loss": 1.825,
|
902 |
+
"step": 1070
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.12,
|
906 |
+
"learning_rate": 7.97685254772283e-06,
|
907 |
+
"loss": 1.7882,
|
908 |
+
"step": 1080
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.12,
|
912 |
+
"learning_rate": 7.973846385089432e-06,
|
913 |
+
"loss": 1.7857,
|
914 |
+
"step": 1090
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.12,
|
918 |
+
"learning_rate": 7.970840222456035e-06,
|
919 |
+
"loss": 1.8229,
|
920 |
+
"step": 1100
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.12,
|
924 |
+
"learning_rate": 7.967834059822637e-06,
|
925 |
+
"loss": 1.8152,
|
926 |
+
"step": 1110
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.12,
|
930 |
+
"learning_rate": 7.964827897189238e-06,
|
931 |
+
"loss": 1.7865,
|
932 |
+
"step": 1120
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.12,
|
936 |
+
"learning_rate": 7.96182173455584e-06,
|
937 |
+
"loss": 1.8038,
|
938 |
+
"step": 1130
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.12,
|
942 |
+
"learning_rate": 7.958815571922442e-06,
|
943 |
+
"loss": 1.796,
|
944 |
+
"step": 1140
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.12,
|
948 |
+
"learning_rate": 7.955809409289041e-06,
|
949 |
+
"loss": 1.7737,
|
950 |
+
"step": 1150
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.13,
|
954 |
+
"learning_rate": 7.952803246655643e-06,
|
955 |
+
"loss": 1.7958,
|
956 |
+
"step": 1160
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.13,
|
960 |
+
"learning_rate": 7.949797084022244e-06,
|
961 |
+
"loss": 1.7981,
|
962 |
+
"step": 1170
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.13,
|
966 |
+
"learning_rate": 7.946790921388846e-06,
|
967 |
+
"loss": 1.8061,
|
968 |
+
"step": 1180
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.13,
|
972 |
+
"learning_rate": 7.943784758755448e-06,
|
973 |
+
"loss": 1.8395,
|
974 |
+
"step": 1190
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.13,
|
978 |
+
"learning_rate": 7.940778596122049e-06,
|
979 |
+
"loss": 1.7803,
|
980 |
+
"step": 1200
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.13,
|
984 |
+
"learning_rate": 7.937772433488652e-06,
|
985 |
+
"loss": 1.7906,
|
986 |
+
"step": 1210
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.13,
|
990 |
+
"learning_rate": 7.934766270855254e-06,
|
991 |
+
"loss": 1.8076,
|
992 |
+
"step": 1220
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.13,
|
996 |
+
"learning_rate": 7.931760108221855e-06,
|
997 |
+
"loss": 1.7971,
|
998 |
+
"step": 1230
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.13,
|
1002 |
+
"learning_rate": 7.928753945588455e-06,
|
1003 |
+
"loss": 1.8292,
|
1004 |
+
"step": 1240
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.14,
|
1008 |
+
"learning_rate": 7.925747782955057e-06,
|
1009 |
+
"loss": 1.7876,
|
1010 |
+
"step": 1250
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.14,
|
1014 |
+
"learning_rate": 7.922741620321658e-06,
|
1015 |
+
"loss": 1.7499,
|
1016 |
+
"step": 1260
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.14,
|
1020 |
+
"learning_rate": 7.91973545768826e-06,
|
1021 |
+
"loss": 1.8209,
|
1022 |
+
"step": 1270
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.14,
|
1026 |
+
"learning_rate": 7.916729295054861e-06,
|
1027 |
+
"loss": 1.7971,
|
1028 |
+
"step": 1280
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.14,
|
1032 |
+
"learning_rate": 7.913723132421463e-06,
|
1033 |
+
"loss": 1.8168,
|
1034 |
+
"step": 1290
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.14,
|
1038 |
+
"learning_rate": 7.910716969788065e-06,
|
1039 |
+
"loss": 1.7771,
|
1040 |
+
"step": 1300
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.14,
|
1044 |
+
"learning_rate": 7.907710807154668e-06,
|
1045 |
+
"loss": 1.7611,
|
1046 |
+
"step": 1310
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.14,
|
1050 |
+
"learning_rate": 7.90470464452127e-06,
|
1051 |
+
"loss": 1.7673,
|
1052 |
+
"step": 1320
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.14,
|
1056 |
+
"learning_rate": 7.90169848188787e-06,
|
1057 |
+
"loss": 1.8694,
|
1058 |
+
"step": 1330
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.15,
|
1062 |
+
"learning_rate": 7.89869231925447e-06,
|
1063 |
+
"loss": 1.7543,
|
1064 |
+
"step": 1340
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.15,
|
1068 |
+
"learning_rate": 7.895686156621072e-06,
|
1069 |
+
"loss": 1.759,
|
1070 |
+
"step": 1350
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.15,
|
1074 |
+
"learning_rate": 7.892679993987674e-06,
|
1075 |
+
"loss": 1.7929,
|
1076 |
+
"step": 1360
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.15,
|
1080 |
+
"learning_rate": 7.889673831354275e-06,
|
1081 |
+
"loss": 1.8223,
|
1082 |
+
"step": 1370
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.15,
|
1086 |
+
"learning_rate": 7.886667668720877e-06,
|
1087 |
+
"loss": 1.7829,
|
1088 |
+
"step": 1380
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.15,
|
1092 |
+
"learning_rate": 7.883661506087479e-06,
|
1093 |
+
"loss": 1.8088,
|
1094 |
+
"step": 1390
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.15,
|
1098 |
+
"learning_rate": 7.88065534345408e-06,
|
1099 |
+
"loss": 1.8012,
|
1100 |
+
"step": 1400
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.15,
|
1104 |
+
"learning_rate": 7.877649180820682e-06,
|
1105 |
+
"loss": 1.7337,
|
1106 |
+
"step": 1410
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.15,
|
1110 |
+
"learning_rate": 7.874643018187283e-06,
|
1111 |
+
"loss": 1.7848,
|
1112 |
+
"step": 1420
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.16,
|
1116 |
+
"learning_rate": 7.871636855553885e-06,
|
1117 |
+
"loss": 1.7741,
|
1118 |
+
"step": 1430
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.16,
|
1122 |
+
"learning_rate": 7.868630692920486e-06,
|
1123 |
+
"loss": 1.8111,
|
1124 |
+
"step": 1440
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.16,
|
1128 |
+
"learning_rate": 7.865624530287088e-06,
|
1129 |
+
"loss": 1.7663,
|
1130 |
+
"step": 1450
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.16,
|
1134 |
+
"learning_rate": 7.86261836765369e-06,
|
1135 |
+
"loss": 1.7635,
|
1136 |
+
"step": 1460
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.16,
|
1140 |
+
"learning_rate": 7.859612205020291e-06,
|
1141 |
+
"loss": 1.7613,
|
1142 |
+
"step": 1470
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.16,
|
1146 |
+
"learning_rate": 7.856606042386892e-06,
|
1147 |
+
"loss": 1.7537,
|
1148 |
+
"step": 1480
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.16,
|
1152 |
+
"learning_rate": 7.853599879753494e-06,
|
1153 |
+
"loss": 1.8094,
|
1154 |
+
"step": 1490
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.16,
|
1158 |
+
"learning_rate": 7.850593717120096e-06,
|
1159 |
+
"loss": 1.7487,
|
1160 |
+
"step": 1500
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.16,
|
1164 |
+
"eval_webgpt_accuracy": 0.486666038374247,
|
1165 |
+
"eval_webgpt_loss": 2.384765625,
|
1166 |
+
"eval_webgpt_runtime": 336.8175,
|
1167 |
+
"eval_webgpt_samples_per_second": 11.626,
|
1168 |
+
"eval_webgpt_steps_per_second": 0.727,
|
1169 |
+
"step": 1500
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 0.16,
|
1173 |
+
"eval_prompt_dialogue_accuracy": 0.5696171266680501,
|
1174 |
+
"eval_prompt_dialogue_loss": 1.7705078125,
|
1175 |
+
"eval_prompt_dialogue_runtime": 809.6613,
|
1176 |
+
"eval_prompt_dialogue_samples_per_second": 12.732,
|
1177 |
+
"eval_prompt_dialogue_steps_per_second": 0.797,
|
1178 |
+
"step": 1500
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.16,
|
1182 |
+
"eval_squad_v2_accuracy": 0.9273763713281866,
|
1183 |
+
"eval_squad_v2_loss": NaN,
|
1184 |
+
"eval_squad_v2_runtime": 941.2422,
|
1185 |
+
"eval_squad_v2_samples_per_second": 12.614,
|
1186 |
+
"eval_squad_v2_steps_per_second": 0.789,
|
1187 |
+
"step": 1500
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"epoch": 0.16,
|
1191 |
+
"eval_adversarial_qa_accuracy": 0.8228088336783989,
|
1192 |
+
"eval_adversarial_qa_loss": 0.76416015625,
|
1193 |
+
"eval_adversarial_qa_runtime": 238.4374,
|
1194 |
+
"eval_adversarial_qa_samples_per_second": 12.582,
|
1195 |
+
"eval_adversarial_qa_steps_per_second": 0.788,
|
1196 |
+
"step": 1500
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.16,
|
1200 |
+
"eval_trivia_qa_nocontext_accuracy": 0.47413712205101255,
|
1201 |
+
"eval_trivia_qa_nocontext_loss": 2.9921875,
|
1202 |
+
"eval_trivia_qa_nocontext_runtime": 1248.2736,
|
1203 |
+
"eval_trivia_qa_nocontext_samples_per_second": 14.375,
|
1204 |
+
"eval_trivia_qa_nocontext_steps_per_second": 0.899,
|
1205 |
+
"step": 1500
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"epoch": 0.16,
|
1209 |
+
"eval_m2m_translation_accuracy": 0.6384202273383193,
|
1210 |
+
"eval_m2m_translation_loss": 1.5703125,
|
1211 |
+
"eval_m2m_translation_runtime": 3725.8719,
|
1212 |
+
"eval_m2m_translation_samples_per_second": 14.204,
|
1213 |
+
"eval_m2m_translation_steps_per_second": 0.888,
|
1214 |
+
"step": 1500
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.16,
|
1218 |
+
"eval_xsum_accuracy": 0.5815857676257413,
|
1219 |
+
"eval_xsum_loss": 1.87109375,
|
1220 |
+
"eval_xsum_runtime": 1009.1324,
|
1221 |
+
"eval_xsum_samples_per_second": 11.229,
|
1222 |
+
"eval_xsum_steps_per_second": 0.703,
|
1223 |
+
"step": 1500
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 0.16,
|
1227 |
+
"eval_cnn_dailymail_accuracy": 0.6627513117154793,
|
1228 |
+
"eval_cnn_dailymail_loss": 1.537109375,
|
1229 |
+
"eval_cnn_dailymail_runtime": 1211.2046,
|
1230 |
+
"eval_cnn_dailymail_samples_per_second": 11.037,
|
1231 |
+
"eval_cnn_dailymail_steps_per_second": 0.69,
|
1232 |
+
"step": 1500
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.16,
|
1236 |
+
"eval_multi_news_accuracy": 0.5242124214780086,
|
1237 |
+
"eval_multi_news_loss": 2.287109375,
|
1238 |
+
"eval_multi_news_runtime": 513.1245,
|
1239 |
+
"eval_multi_news_samples_per_second": 10.956,
|
1240 |
+
"eval_multi_news_steps_per_second": 0.686,
|
1241 |
+
"step": 1500
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.16,
|
1245 |
+
"eval_scitldr_accuracy": 0.46804191723122984,
|
1246 |
+
"eval_scitldr_loss": 2.4921875,
|
1247 |
+
"eval_scitldr_runtime": 56.2815,
|
1248 |
+
"eval_scitldr_samples_per_second": 10.998,
|
1249 |
+
"eval_scitldr_steps_per_second": 0.693,
|
1250 |
+
"step": 1500
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.16,
|
1254 |
+
"eval_soda_accuracy": 0.7266564618412421,
|
1255 |
+
"eval_soda_loss": 1.12890625,
|
1256 |
+
"eval_soda_runtime": 82.0556,
|
1257 |
+
"eval_soda_samples_per_second": 12.199,
|
1258 |
+
"eval_soda_steps_per_second": 0.768,
|
1259 |
+
"step": 1500
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 0.16,
|
1263 |
+
"eval_joke_accuracy": 0.45995283430867323,
|
1264 |
+
"eval_joke_loss": 2.5,
|
1265 |
+
"eval_joke_runtime": 7.0053,
|
1266 |
+
"eval_joke_samples_per_second": 10.849,
|
1267 |
+
"eval_joke_steps_per_second": 0.714,
|
1268 |
+
"step": 1500
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 0.16,
|
1272 |
+
"eval_gsm8k_accuracy": 0.8421233100385344,
|
1273 |
+
"eval_gsm8k_loss": 0.57177734375,
|
1274 |
+
"eval_gsm8k_runtime": 113.8436,
|
1275 |
+
"eval_gsm8k_samples_per_second": 11.586,
|
1276 |
+
"eval_gsm8k_steps_per_second": 0.729,
|
1277 |
+
"step": 1500
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.16,
|
1281 |
+
"eval_samsum_accuracy": 0.6305018339446482,
|
1282 |
+
"eval_samsum_loss": 1.490234375,
|
1283 |
+
"eval_samsum_runtime": 72.6647,
|
1284 |
+
"eval_samsum_samples_per_second": 11.257,
|
1285 |
+
"eval_samsum_steps_per_second": 0.716,
|
1286 |
+
"step": 1500
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.16,
|
1290 |
+
"learning_rate": 7.847587554486697e-06,
|
1291 |
+
"loss": 1.7693,
|
1292 |
+
"step": 1510
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.17,
|
1296 |
+
"learning_rate": 7.844882008116638e-06,
|
1297 |
+
"loss": 1.7719,
|
1298 |
+
"step": 1520
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.17,
|
1302 |
+
"learning_rate": 7.84187584548324e-06,
|
1303 |
+
"loss": 1.7777,
|
1304 |
+
"step": 1530
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.17,
|
1308 |
+
"learning_rate": 7.838869682849841e-06,
|
1309 |
+
"loss": 1.7922,
|
1310 |
+
"step": 1540
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 0.17,
|
1314 |
+
"learning_rate": 7.835863520216443e-06,
|
1315 |
+
"loss": 1.7688,
|
1316 |
+
"step": 1550
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.17,
|
1320 |
+
"learning_rate": 7.832857357583046e-06,
|
1321 |
+
"loss": 1.7848,
|
1322 |
+
"step": 1560
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.17,
|
1326 |
+
"learning_rate": 7.829851194949648e-06,
|
1327 |
+
"loss": 1.7795,
|
1328 |
+
"step": 1570
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.17,
|
1332 |
+
"learning_rate": 7.826845032316247e-06,
|
1333 |
+
"loss": 1.7826,
|
1334 |
+
"step": 1580
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 0.17,
|
1338 |
+
"learning_rate": 7.823838869682849e-06,
|
1339 |
+
"loss": 1.7511,
|
1340 |
+
"step": 1590
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.17,
|
1344 |
+
"learning_rate": 7.82083270704945e-06,
|
1345 |
+
"loss": 1.7502,
|
1346 |
+
"step": 1600
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.17,
|
1350 |
+
"learning_rate": 7.817826544416052e-06,
|
1351 |
+
"loss": 1.7384,
|
1352 |
+
"step": 1610
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 0.18,
|
1356 |
+
"learning_rate": 7.814820381782654e-06,
|
1357 |
+
"loss": 1.773,
|
1358 |
+
"step": 1620
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.18,
|
1362 |
+
"learning_rate": 7.811814219149255e-06,
|
1363 |
+
"loss": 1.785,
|
1364 |
+
"step": 1630
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 0.18,
|
1368 |
+
"learning_rate": 7.808808056515857e-06,
|
1369 |
+
"loss": 1.7407,
|
1370 |
+
"step": 1640
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.18,
|
1374 |
+
"learning_rate": 7.805801893882458e-06,
|
1375 |
+
"loss": 1.8115,
|
1376 |
+
"step": 1650
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 0.18,
|
1380 |
+
"learning_rate": 7.80279573124906e-06,
|
1381 |
+
"loss": 1.8207,
|
1382 |
+
"step": 1660
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.18,
|
1386 |
+
"learning_rate": 7.799789568615661e-06,
|
1387 |
+
"loss": 1.7618,
|
1388 |
+
"step": 1670
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.18,
|
1392 |
+
"learning_rate": 7.796783405982263e-06,
|
1393 |
+
"loss": 1.7725,
|
1394 |
+
"step": 1680
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 0.18,
|
1398 |
+
"learning_rate": 7.793777243348864e-06,
|
1399 |
+
"loss": 1.7618,
|
1400 |
+
"step": 1690
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.18,
|
1404 |
+
"learning_rate": 7.790771080715466e-06,
|
1405 |
+
"loss": 1.7567,
|
1406 |
+
"step": 1700
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 0.19,
|
1410 |
+
"learning_rate": 7.787764918082068e-06,
|
1411 |
+
"loss": 1.7704,
|
1412 |
+
"step": 1710
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.19,
|
1416 |
+
"learning_rate": 7.784758755448669e-06,
|
1417 |
+
"loss": 1.7426,
|
1418 |
+
"step": 1720
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.19,
|
1422 |
+
"learning_rate": 7.78175259281527e-06,
|
1423 |
+
"loss": 1.7373,
|
1424 |
+
"step": 1730
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.19,
|
1428 |
+
"learning_rate": 7.778746430181872e-06,
|
1429 |
+
"loss": 1.7966,
|
1430 |
+
"step": 1740
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.19,
|
1434 |
+
"learning_rate": 7.775740267548474e-06,
|
1435 |
+
"loss": 1.773,
|
1436 |
+
"step": 1750
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 0.19,
|
1440 |
+
"learning_rate": 7.772734104915075e-06,
|
1441 |
+
"loss": 1.7664,
|
1442 |
+
"step": 1760
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.19,
|
1446 |
+
"learning_rate": 7.769727942281677e-06,
|
1447 |
+
"loss": 1.7518,
|
1448 |
+
"step": 1770
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.19,
|
1452 |
+
"learning_rate": 7.766721779648278e-06,
|
1453 |
+
"loss": 1.7743,
|
1454 |
+
"step": 1780
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.19,
|
1458 |
+
"learning_rate": 7.76371561701488e-06,
|
1459 |
+
"loss": 1.7882,
|
1460 |
+
"step": 1790
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 0.2,
|
1464 |
+
"learning_rate": 7.760709454381481e-06,
|
1465 |
+
"loss": 1.7534,
|
1466 |
+
"step": 1800
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.2,
|
1470 |
+
"learning_rate": 7.757703291748083e-06,
|
1471 |
+
"loss": 1.7761,
|
1472 |
+
"step": 1810
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.2,
|
1476 |
+
"learning_rate": 7.754697129114685e-06,
|
1477 |
+
"loss": 1.7951,
|
1478 |
+
"step": 1820
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 0.2,
|
1482 |
+
"learning_rate": 7.751690966481286e-06,
|
1483 |
+
"loss": 1.7287,
|
1484 |
+
"step": 1830
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.2,
|
1488 |
+
"learning_rate": 7.748684803847888e-06,
|
1489 |
+
"loss": 1.7674,
|
1490 |
+
"step": 1840
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.2,
|
1494 |
+
"learning_rate": 7.74567864121449e-06,
|
1495 |
+
"loss": 1.7664,
|
1496 |
+
"step": 1850
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.2,
|
1500 |
+
"learning_rate": 7.74267247858109e-06,
|
1501 |
+
"loss": 1.7569,
|
1502 |
+
"step": 1860
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 0.2,
|
1506 |
+
"learning_rate": 7.739666315947692e-06,
|
1507 |
+
"loss": 1.8026,
|
1508 |
+
"step": 1870
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.2,
|
1512 |
+
"learning_rate": 7.736960769577633e-06,
|
1513 |
+
"loss": 1.7262,
|
1514 |
+
"step": 1880
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.21,
|
1518 |
+
"learning_rate": 7.733954606944235e-06,
|
1519 |
+
"loss": 1.7266,
|
1520 |
+
"step": 1890
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 0.21,
|
1524 |
+
"learning_rate": 7.730948444310836e-06,
|
1525 |
+
"loss": 1.7476,
|
1526 |
+
"step": 1900
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.21,
|
1530 |
+
"learning_rate": 7.727942281677438e-06,
|
1531 |
+
"loss": 1.7544,
|
1532 |
+
"step": 1910
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.21,
|
1536 |
+
"learning_rate": 7.72493611904404e-06,
|
1537 |
+
"loss": 1.7859,
|
1538 |
+
"step": 1920
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.21,
|
1542 |
+
"learning_rate": 7.721929956410641e-06,
|
1543 |
+
"loss": 1.7386,
|
1544 |
+
"step": 1930
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 0.21,
|
1548 |
+
"learning_rate": 7.718923793777243e-06,
|
1549 |
+
"loss": 1.7012,
|
1550 |
+
"step": 1940
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.21,
|
1554 |
+
"learning_rate": 7.715917631143844e-06,
|
1555 |
+
"loss": 1.7736,
|
1556 |
+
"step": 1950
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.21,
|
1560 |
+
"learning_rate": 7.712911468510446e-06,
|
1561 |
+
"loss": 1.7398,
|
1562 |
+
"step": 1960
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.21,
|
1566 |
+
"learning_rate": 7.709905305877047e-06,
|
1567 |
+
"loss": 1.8026,
|
1568 |
+
"step": 1970
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.22,
|
1572 |
+
"learning_rate": 7.706899143243649e-06,
|
1573 |
+
"loss": 1.798,
|
1574 |
+
"step": 1980
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.22,
|
1578 |
+
"learning_rate": 7.70389298061025e-06,
|
1579 |
+
"loss": 1.802,
|
1580 |
+
"step": 1990
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.22,
|
1584 |
+
"learning_rate": 7.700886817976852e-06,
|
1585 |
+
"loss": 1.7447,
|
1586 |
+
"step": 2000
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.22,
|
1590 |
+
"eval_webgpt_accuracy": 0.48722841158921415,
|
1591 |
+
"eval_webgpt_loss": 2.37890625,
|
1592 |
+
"eval_webgpt_runtime": 335.1847,
|
1593 |
+
"eval_webgpt_samples_per_second": 11.683,
|
1594 |
+
"eval_webgpt_steps_per_second": 0.731,
|
1595 |
+
"step": 2000
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"epoch": 0.22,
|
1599 |
+
"eval_prompt_dialogue_accuracy": 0.5729272869993594,
|
1600 |
+
"eval_prompt_dialogue_loss": 1.7509765625,
|
1601 |
+
"eval_prompt_dialogue_runtime": 808.5089,
|
1602 |
+
"eval_prompt_dialogue_samples_per_second": 12.751,
|
1603 |
+
"eval_prompt_dialogue_steps_per_second": 0.798,
|
1604 |
+
"step": 2000
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 0.22,
|
1608 |
+
"eval_squad_v2_accuracy": 0.9350127871125027,
|
1609 |
+
"eval_squad_v2_loss": NaN,
|
1610 |
+
"eval_squad_v2_runtime": 937.9399,
|
1611 |
+
"eval_squad_v2_samples_per_second": 12.659,
|
1612 |
+
"eval_squad_v2_steps_per_second": 0.792,
|
1613 |
+
"step": 2000
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 0.22,
|
1617 |
+
"eval_adversarial_qa_accuracy": 0.8308028525419829,
|
1618 |
+
"eval_adversarial_qa_loss": 0.7265625,
|
1619 |
+
"eval_adversarial_qa_runtime": 238.5652,
|
1620 |
+
"eval_adversarial_qa_samples_per_second": 12.575,
|
1621 |
+
"eval_adversarial_qa_steps_per_second": 0.788,
|
1622 |
+
"step": 2000
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.22,
|
1626 |
+
"eval_trivia_qa_nocontext_accuracy": 0.47783426824006153,
|
1627 |
+
"eval_trivia_qa_nocontext_loss": 2.9609375,
|
1628 |
+
"eval_trivia_qa_nocontext_runtime": 1249.121,
|
1629 |
+
"eval_trivia_qa_nocontext_samples_per_second": 14.365,
|
1630 |
+
"eval_trivia_qa_nocontext_steps_per_second": 0.898,
|
1631 |
+
"step": 2000
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"epoch": 0.22,
|
1635 |
+
"eval_m2m_translation_accuracy": 0.6576231472988909,
|
1636 |
+
"eval_m2m_translation_loss": 1.4755859375,
|
1637 |
+
"eval_m2m_translation_runtime": 3725.504,
|
1638 |
+
"eval_m2m_translation_samples_per_second": 14.206,
|
1639 |
+
"eval_m2m_translation_steps_per_second": 0.888,
|
1640 |
+
"step": 2000
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.22,
|
1644 |
+
"eval_xsum_accuracy": 0.5862788967827711,
|
1645 |
+
"eval_xsum_loss": 1.8447265625,
|
1646 |
+
"eval_xsum_runtime": 1007.4241,
|
1647 |
+
"eval_xsum_samples_per_second": 11.248,
|
1648 |
+
"eval_xsum_steps_per_second": 0.704,
|
1649 |
+
"step": 2000
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"epoch": 0.22,
|
1653 |
+
"eval_cnn_dailymail_accuracy": 0.6635118400214548,
|
1654 |
+
"eval_cnn_dailymail_loss": 1.5224609375,
|
1655 |
+
"eval_cnn_dailymail_runtime": 1207.7216,
|
1656 |
+
"eval_cnn_dailymail_samples_per_second": 11.069,
|
1657 |
+
"eval_cnn_dailymail_steps_per_second": 0.692,
|
1658 |
+
"step": 2000
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.22,
|
1662 |
+
"eval_multi_news_accuracy": 0.5254140019732162,
|
1663 |
+
"eval_multi_news_loss": 2.271484375,
|
1664 |
+
"eval_multi_news_runtime": 511.4499,
|
1665 |
+
"eval_multi_news_samples_per_second": 10.992,
|
1666 |
+
"eval_multi_news_steps_per_second": 0.688,
|
1667 |
+
"step": 2000
|
1668 |
+
},
|
1669 |
+
{
|
1670 |
+
"epoch": 0.22,
|
1671 |
+
"eval_scitldr_accuracy": 0.46584969807682547,
|
1672 |
+
"eval_scitldr_loss": 2.50390625,
|
1673 |
+
"eval_scitldr_runtime": 56.1361,
|
1674 |
+
"eval_scitldr_samples_per_second": 11.027,
|
1675 |
+
"eval_scitldr_steps_per_second": 0.695,
|
1676 |
+
"step": 2000
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.22,
|
1680 |
+
"eval_soda_accuracy": 0.7280997157227204,
|
1681 |
+
"eval_soda_loss": 1.1171875,
|
1682 |
+
"eval_soda_runtime": 81.9632,
|
1683 |
+
"eval_soda_samples_per_second": 12.213,
|
1684 |
+
"eval_soda_steps_per_second": 0.769,
|
1685 |
+
"step": 2000
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 0.22,
|
1689 |
+
"eval_joke_accuracy": 0.4692986287011966,
|
1690 |
+
"eval_joke_loss": 2.46484375,
|
1691 |
+
"eval_joke_runtime": 6.7476,
|
1692 |
+
"eval_joke_samples_per_second": 11.263,
|
1693 |
+
"eval_joke_steps_per_second": 0.741,
|
1694 |
+
"step": 2000
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.22,
|
1698 |
+
"eval_gsm8k_accuracy": 0.8437234667885833,
|
1699 |
+
"eval_gsm8k_loss": 0.5634765625,
|
1700 |
+
"eval_gsm8k_runtime": 113.7256,
|
1701 |
+
"eval_gsm8k_samples_per_second": 11.598,
|
1702 |
+
"eval_gsm8k_steps_per_second": 0.73,
|
1703 |
+
"step": 2000
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.22,
|
1707 |
+
"eval_samsum_accuracy": 0.6325025008336113,
|
1708 |
+
"eval_samsum_loss": 1.4638671875,
|
1709 |
+
"eval_samsum_runtime": 72.3462,
|
1710 |
+
"eval_samsum_samples_per_second": 11.307,
|
1711 |
+
"eval_samsum_steps_per_second": 0.719,
|
1712 |
+
"step": 2000
|
1713 |
+
}
|
1714 |
+
],
|
1715 |
+
"max_steps": 27612,
|
1716 |
+
"num_train_epochs": 3,
|
1717 |
+
"total_flos": 428521886187520.0,
|
1718 |
+
"trial_name": null,
|
1719 |
+
"trial_params": null
|
1720 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:250f3ddd3f36842fe2e5d53c77d84a300a9acbd55b30c6b38e058f6650458b60
|
3 |
+
size 4719
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
22 |
+
OPTIMIZER_STATE_DICT,
|
23 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
24 |
+
FP32_FLAT_GROUPS,
|
25 |
+
ZERO_STAGE,
|
26 |
+
PARTITION_COUNT,
|
27 |
+
PARAM_SHAPES,
|
28 |
+
BUFFER_NAMES)
|
29 |
+
|
30 |
+
debug = 0
|
31 |
+
|
32 |
+
# load to cpu
|
33 |
+
device = torch.device('cpu')
|
34 |
+
|
35 |
+
|
36 |
+
def atoi(text):
|
37 |
+
return int(text) if text.isdigit() else text
|
38 |
+
|
39 |
+
|
40 |
+
def natural_keys(text):
|
41 |
+
'''
|
42 |
+
alist.sort(key=natural_keys) sorts in human order
|
43 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
44 |
+
(See Toothy's implementation in the comments)
|
45 |
+
'''
|
46 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
47 |
+
|
48 |
+
|
49 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
50 |
+
if not os.path.isdir(checkpoint_dir):
|
51 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
52 |
+
|
53 |
+
# there should be only one file
|
54 |
+
if zero_stage == 2:
|
55 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
56 |
+
elif zero_stage == 3:
|
57 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
58 |
+
|
59 |
+
if not os.path.exists(file):
|
60 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
61 |
+
|
62 |
+
return file
|
63 |
+
|
64 |
+
|
65 |
+
def get_optim_files(checkpoint_dir):
|
66 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
67 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
68 |
+
"*_optim_states.pt")),
|
69 |
+
key=natural_keys)
|
70 |
+
|
71 |
+
if len(optim_files) == 0:
|
72 |
+
raise FileNotFoundError(
|
73 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
74 |
+
|
75 |
+
return optim_files
|
76 |
+
|
77 |
+
|
78 |
+
def parse_model_state(file):
|
79 |
+
state_dict = torch.load(file, map_location=device)
|
80 |
+
|
81 |
+
if BUFFER_NAMES not in state_dict:
|
82 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
83 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
84 |
+
if debug:
|
85 |
+
print("Found buffers:", buffer_names)
|
86 |
+
|
87 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
88 |
+
buffers = {
|
89 |
+
k: v.float()
|
90 |
+
for k,
|
91 |
+
v in state_dict["module"].items() if k in buffer_names
|
92 |
+
}
|
93 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
94 |
+
|
95 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
96 |
+
|
97 |
+
return buffers, param_shapes, ds_version
|
98 |
+
|
99 |
+
|
100 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
101 |
+
|
102 |
+
total_files = len(files)
|
103 |
+
state_dicts = []
|
104 |
+
for f in files:
|
105 |
+
state_dicts.append(torch.load(f, map_location=device))
|
106 |
+
|
107 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
108 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
109 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
110 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
111 |
+
|
112 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
113 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
114 |
+
# use the max of the partition_count to get the dp world_size.
|
115 |
+
|
116 |
+
if type(world_size) is list:
|
117 |
+
world_size = max(world_size)
|
118 |
+
|
119 |
+
if world_size != total_files:
|
120 |
+
raise ValueError(
|
121 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
122 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
123 |
+
)
|
124 |
+
|
125 |
+
# the groups are named differently in each stage
|
126 |
+
if zero_stage == 2:
|
127 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
128 |
+
elif zero_stage == 3:
|
129 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
130 |
+
else:
|
131 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
132 |
+
|
133 |
+
if zero_stage == 2:
|
134 |
+
fp32_flat_groups = [
|
135 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
136 |
+
for i in range(len(state_dicts))
|
137 |
+
]
|
138 |
+
elif zero_stage == 3:
|
139 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
140 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
141 |
+
#
|
142 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
143 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
144 |
+
|
145 |
+
fp32_flat_groups = [
|
146 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
147 |
+
0) for i in range(len(state_dicts))
|
148 |
+
]
|
149 |
+
|
150 |
+
return zero_stage, world_size, fp32_flat_groups
|
151 |
+
|
152 |
+
|
153 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
154 |
+
"""
|
155 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
156 |
+
|
157 |
+
Args:
|
158 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
159 |
+
|
160 |
+
"""
|
161 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
162 |
+
|
163 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
164 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
165 |
+
print(
|
166 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
167 |
+
|
168 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
169 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
170 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
171 |
+
|
172 |
+
if zero_stage == 2:
|
173 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
174 |
+
param_shapes,
|
175 |
+
fp32_flat_groups,
|
176 |
+
buffers)
|
177 |
+
elif zero_stage == 3:
|
178 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
179 |
+
param_shapes,
|
180 |
+
fp32_flat_groups,
|
181 |
+
buffers)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
185 |
+
param_shapes,
|
186 |
+
fp32_flat_groups,
|
187 |
+
buffers):
|
188 |
+
|
189 |
+
# Reconstruction protocol:
|
190 |
+
#
|
191 |
+
# XXX: document this
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
for i in range(world_size):
|
195 |
+
for j in range(len(fp32_flat_groups[0])):
|
196 |
+
print(
|
197 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
198 |
+
|
199 |
+
# XXX: memory usage doubles here (zero2)
|
200 |
+
num_param_groups = len(fp32_flat_groups[0])
|
201 |
+
merged_single_partition_of_fp32_groups = []
|
202 |
+
for i in range(num_param_groups):
|
203 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
204 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
205 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
206 |
+
avail_numel = sum([
|
207 |
+
full_single_fp32_vector.numel()
|
208 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
209 |
+
])
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
213 |
+
wanted_numel = sum(
|
214 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
215 |
+
# not asserting if there is a mismatch due to possible padding
|
216 |
+
print(f"Have {avail_numel} numels to process.")
|
217 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
218 |
+
|
219 |
+
state_dict = OrderedDict()
|
220 |
+
|
221 |
+
# buffers
|
222 |
+
state_dict.update(buffers)
|
223 |
+
if debug:
|
224 |
+
print(f"added {len(buffers)} buffers")
|
225 |
+
|
226 |
+
# params
|
227 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
228 |
+
# out-of-core computing solution
|
229 |
+
total_numel = 0
|
230 |
+
total_params = 0
|
231 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
232 |
+
offset = 0
|
233 |
+
avail_numel = full_single_fp32_vector.numel()
|
234 |
+
for name, shape in shapes.items():
|
235 |
+
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
total_params += 1
|
239 |
+
|
240 |
+
if debug:
|
241 |
+
print(
|
242 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
243 |
+
)
|
244 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
245 |
+
0,
|
246 |
+
offset,
|
247 |
+
unpartitioned_numel).view(shape)
|
248 |
+
offset += unpartitioned_numel
|
249 |
+
|
250 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
251 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
252 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
253 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
254 |
+
align_to = 2 * world_size
|
255 |
+
|
256 |
+
def zero2_align(x):
|
257 |
+
return align_to * math.ceil(x / align_to)
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
261 |
+
|
262 |
+
offset = zero2_align(offset)
|
263 |
+
avail_numel = zero2_align(avail_numel)
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
267 |
+
|
268 |
+
# Sanity check
|
269 |
+
if offset != avail_numel:
|
270 |
+
raise ValueError(
|
271 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
272 |
+
|
273 |
+
print(
|
274 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
275 |
+
)
|
276 |
+
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
281 |
+
remainder = unpartitioned_numel % world_size
|
282 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
283 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
284 |
+
return partitioned_numel, padding_numel
|
285 |
+
|
286 |
+
|
287 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
288 |
+
param_shapes,
|
289 |
+
fp32_flat_groups,
|
290 |
+
buffers):
|
291 |
+
|
292 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
293 |
+
# param, re-consolidating each param, while dealing with padding if any
|
294 |
+
|
295 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
296 |
+
# merge list of dicts, preserving order
|
297 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
for i in range(world_size):
|
301 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
302 |
+
|
303 |
+
wanted_params = len(param_shapes)
|
304 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
305 |
+
# not asserting if there is a mismatch due to possible padding
|
306 |
+
print(f"Have {avail_numel} numels to process.")
|
307 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
308 |
+
|
309 |
+
state_dict = OrderedDict()
|
310 |
+
|
311 |
+
# buffers
|
312 |
+
state_dict.update(buffers)
|
313 |
+
if debug:
|
314 |
+
print(f"added {len(buffers)} buffers")
|
315 |
+
|
316 |
+
# params
|
317 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
318 |
+
# out-of-core computing solution
|
319 |
+
offset = 0
|
320 |
+
total_numel = 0
|
321 |
+
total_params = 0
|
322 |
+
for name, shape in param_shapes.items():
|
323 |
+
|
324 |
+
unpartitioned_numel = shape.numel()
|
325 |
+
total_numel += unpartitioned_numel
|
326 |
+
total_params += 1
|
327 |
+
|
328 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
329 |
+
|
330 |
+
if debug:
|
331 |
+
print(
|
332 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
333 |
+
)
|
334 |
+
|
335 |
+
# XXX: memory usage doubles here
|
336 |
+
state_dict[name] = torch.cat(
|
337 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
338 |
+
offset,
|
339 |
+
partitioned_numel)
|
340 |
+
for i in range(world_size)),
|
341 |
+
0).narrow(0,
|
342 |
+
0,
|
343 |
+
unpartitioned_numel).view(shape)
|
344 |
+
offset += partitioned_numel
|
345 |
+
|
346 |
+
offset *= world_size
|
347 |
+
|
348 |
+
# Sanity check
|
349 |
+
if offset != avail_numel:
|
350 |
+
raise ValueError(
|
351 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
352 |
+
|
353 |
+
print(
|
354 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
355 |
+
)
|
356 |
+
|
357 |
+
return state_dict
|
358 |
+
|
359 |
+
|
360 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
361 |
+
"""
|
362 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
363 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
364 |
+
via a model hub.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
368 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
- pytorch ``state_dict``
|
372 |
+
|
373 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
374 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
375 |
+
the checkpoint.
|
376 |
+
|
377 |
+
A typical usage might be ::
|
378 |
+
|
379 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
380 |
+
# do the training and checkpoint saving
|
381 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
382 |
+
model = model.cpu() # move to cpu
|
383 |
+
model.load_state_dict(state_dict)
|
384 |
+
# submit to model hub or save the model to share with others
|
385 |
+
|
386 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
387 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
388 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
389 |
+
|
390 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
391 |
+
|
392 |
+
"""
|
393 |
+
if tag is None:
|
394 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
395 |
+
if os.path.isfile(latest_path):
|
396 |
+
with open(latest_path, 'r') as fd:
|
397 |
+
tag = fd.read().strip()
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
400 |
+
|
401 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
402 |
+
|
403 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
404 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
405 |
+
|
406 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
410 |
+
"""
|
411 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
412 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
416 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
417 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
418 |
+
"""
|
419 |
+
|
420 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
421 |
+
print(f"Saving fp32 state dict to {output_file}")
|
422 |
+
torch.save(state_dict, output_file)
|
423 |
+
|
424 |
+
|
425 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
426 |
+
"""
|
427 |
+
1. Put the provided model to cpu
|
428 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
429 |
+
3. Load it into the provided model
|
430 |
+
|
431 |
+
Args:
|
432 |
+
- ``model``: the model object to update
|
433 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
434 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
- ``model`: modified model
|
438 |
+
|
439 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
440 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
441 |
+
conveniently placed for you in the checkpoint folder.
|
442 |
+
|
443 |
+
A typical usage might be ::
|
444 |
+
|
445 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
446 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
447 |
+
# submit to model hub or save the model to share with others
|
448 |
+
|
449 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
450 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
451 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
452 |
+
|
453 |
+
"""
|
454 |
+
logger.info(f"Extracting fp32 weights")
|
455 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
456 |
+
|
457 |
+
logger.info(f"Overwriting model with fp32 weights")
|
458 |
+
model = model.cpu()
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
|
466 |
+
parser = argparse.ArgumentParser()
|
467 |
+
parser.add_argument(
|
468 |
+
"checkpoint_dir",
|
469 |
+
type=str,
|
470 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
471 |
+
parser.add_argument(
|
472 |
+
"output_file",
|
473 |
+
type=str,
|
474 |
+
help=
|
475 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
476 |
+
)
|
477 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
478 |
+
args = parser.parse_args()
|
479 |
+
|
480 |
+
debug = args.debug
|
481 |
+
|
482 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|