---
base_model: BAAI/bge-large-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1024
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: After rescue, survivors may require hospital treatment. This must
be provided as quickly as possible. The SMC should consider having ambulance and
hospital facilities ready.
sentences:
- What should the SMC consider having ready after a rescue?
- What is critical for mass rescue operations?
- What can computer programs do to relieve the search planner of computational burden?
- source_sentence: SMCs conduct communication searches when facts are needed to supplement
initially reported information. Efforts are continued to contact the craft, to
find out more about a possible distress situation, and to prepare for or to avoid
a search effort. Section 3.5 has more information on communication searches.MEDICO
Communications
sentences:
- What is generally produced by dead-reckoning navigation alone for search aircraft?
- What should be the widths of rectangular areas to be covered with a PS pattern
and the lengths of rectangular areas to be covered with a CS pattern?
- What is the purpose of SMCs conducting communication searches?
- source_sentence: 'SAR facilities include designated SRUs and other resources which
can be used to conduct or support SAR operations. An SRU is a unit composed of
trained personnel and provided with equipment suitable for the expeditious and
efficient conduct of search and rescue. An SRU can be an air, maritime, or land-based
facility. Facilities selected as SRUs should be able to reach the scene of distress
quickly and, in particular, be suitable for one or more of the following operations:–
providing assistance to prevent or reduce the severity of accidents and the hardship
of survivors, e.g., escorting an aircraft, standing by a sinking vessel;– conducting
a search;– delivering supplies and survival equipment to the scene;– rescuing
survivors;– providing food, medical or other initial needs of survivors; and–
delivering the survivors to a place of safety. '
sentences:
- What are the types of SAR facilities that can be used to conduct or support SAR
operations?
- What is the scenario in which a simulated communication search is carried out
and an air search is planned?
- What is discussed in detail in various other places in this Manual?
- source_sentence: Support facilities enable the operational response resources (e.g.,
the RCC and SRUs) to provide the SAR services. Without the supporting resources,
the operational resources cannot sustain effective operations. There is a wide
range of support facilities and services, which include the following:Training
facilities Facility maintenanceCommunications facilities Management functionsNavigation
systems Research and developmentSAR data providers (SDPs) PlanningMedical facilities
ExercisesAircraft landing fields Refuelling servicesVoluntary services (e.g.,
Red Cross) Critical incident stress counsellors Computer resources
sentences:
- How many ways are there to train SAR specialists and teams?
- What types of support facilities are mentioned in the context?
- What is the duration of a prolonged blast?
- source_sentence: 'Sound funding decisions arise out of accurate assessments made
of the SAR system. To measure the performance or effectiveness of a SAR system
usually requires collecting information or statistics and establishing agreed-upon
goals. All pertinent information should be collected, including where the system
failed to perform as it should have; failures and successes provide valuable information
in assessing effectiveness and determining means to improve. '
sentences:
- What is required to measure the performance or effectiveness of a SAR system?
- What is the purpose of having an SRR?
- What is the effect of decreasing track spacing on the area that can be searched?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7631578947368421
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9122807017543859
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9385964912280702
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9912280701754386
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7631578947368421
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30409356725146197
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18771929824561404
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09912280701754386
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7631578947368421
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9122807017543859
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9385964912280702
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9912280701754386
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8800566604626379
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8442112225006964
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8449422166527428
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7456140350877193
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9210526315789473
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9385964912280702
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9912280701754386
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7456140350877193
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30701754385964913
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18771929824561404
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09912280701754386
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7456140350877193
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9210526315789473
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9385964912280702
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9912280701754386
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8757357824813555
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8383040935672514
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8389306599832915
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7280701754385965
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8947368421052632
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9385964912280702
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.956140350877193
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7280701754385965
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2982456140350877
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18771929824561406
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0956140350877193
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7280701754385965
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8947368421052632
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9385964912280702
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.956140350877193
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8514949465138896
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8167397660818715
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8197472848788638
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6842105263157895
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8596491228070176
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8947368421052632
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9385964912280702
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6842105263157895
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28654970760233917
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17894736842105263
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09385964912280703
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6842105263157895
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8596491228070176
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8947368421052632
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9385964912280702
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8139200097505314
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7736702868281816
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7777583689864392
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6140350877192983
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7456140350877193
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8245614035087719
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8947368421052632
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6140350877192983
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24853801169590642
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16491228070175437
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08947368421052632
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6140350877192983
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7456140350877193
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8245614035087719
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8947368421052632
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7479917679807845
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7017961570593151
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7073668567988093
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tessimago/bge-large-repmus-matryoshka")
# Run inference
sentences = [
'Sound funding decisions arise out of accurate assessments made of the SAR system. To measure the performance or effectiveness of a SAR system usually requires collecting information or statistics and establishing agreed-upon goals. All pertinent information should be collected, including where the system failed to perform as it should have; failures and successes provide valuable information in assessing effectiveness and determining means to improve. ',
'What is required to measure the performance or effectiveness of a SAR system?',
'What is the effect of decreasing track spacing on the area that can be searched?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7632 |
| cosine_accuracy@3 | 0.9123 |
| cosine_accuracy@5 | 0.9386 |
| cosine_accuracy@10 | 0.9912 |
| cosine_precision@1 | 0.7632 |
| cosine_precision@3 | 0.3041 |
| cosine_precision@5 | 0.1877 |
| cosine_precision@10 | 0.0991 |
| cosine_recall@1 | 0.7632 |
| cosine_recall@3 | 0.9123 |
| cosine_recall@5 | 0.9386 |
| cosine_recall@10 | 0.9912 |
| cosine_ndcg@10 | 0.8801 |
| cosine_mrr@10 | 0.8442 |
| **cosine_map@100** | **0.8449** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7456 |
| cosine_accuracy@3 | 0.9211 |
| cosine_accuracy@5 | 0.9386 |
| cosine_accuracy@10 | 0.9912 |
| cosine_precision@1 | 0.7456 |
| cosine_precision@3 | 0.307 |
| cosine_precision@5 | 0.1877 |
| cosine_precision@10 | 0.0991 |
| cosine_recall@1 | 0.7456 |
| cosine_recall@3 | 0.9211 |
| cosine_recall@5 | 0.9386 |
| cosine_recall@10 | 0.9912 |
| cosine_ndcg@10 | 0.8757 |
| cosine_mrr@10 | 0.8383 |
| **cosine_map@100** | **0.8389** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7281 |
| cosine_accuracy@3 | 0.8947 |
| cosine_accuracy@5 | 0.9386 |
| cosine_accuracy@10 | 0.9561 |
| cosine_precision@1 | 0.7281 |
| cosine_precision@3 | 0.2982 |
| cosine_precision@5 | 0.1877 |
| cosine_precision@10 | 0.0956 |
| cosine_recall@1 | 0.7281 |
| cosine_recall@3 | 0.8947 |
| cosine_recall@5 | 0.9386 |
| cosine_recall@10 | 0.9561 |
| cosine_ndcg@10 | 0.8515 |
| cosine_mrr@10 | 0.8167 |
| **cosine_map@100** | **0.8197** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6842 |
| cosine_accuracy@3 | 0.8596 |
| cosine_accuracy@5 | 0.8947 |
| cosine_accuracy@10 | 0.9386 |
| cosine_precision@1 | 0.6842 |
| cosine_precision@3 | 0.2865 |
| cosine_precision@5 | 0.1789 |
| cosine_precision@10 | 0.0939 |
| cosine_recall@1 | 0.6842 |
| cosine_recall@3 | 0.8596 |
| cosine_recall@5 | 0.8947 |
| cosine_recall@10 | 0.9386 |
| cosine_ndcg@10 | 0.8139 |
| cosine_mrr@10 | 0.7737 |
| **cosine_map@100** | **0.7778** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.614 |
| cosine_accuracy@3 | 0.7456 |
| cosine_accuracy@5 | 0.8246 |
| cosine_accuracy@10 | 0.8947 |
| cosine_precision@1 | 0.614 |
| cosine_precision@3 | 0.2485 |
| cosine_precision@5 | 0.1649 |
| cosine_precision@10 | 0.0895 |
| cosine_recall@1 | 0.614 |
| cosine_recall@3 | 0.7456 |
| cosine_recall@5 | 0.8246 |
| cosine_recall@10 | 0.8947 |
| cosine_ndcg@10 | 0.748 |
| cosine_mrr@10 | 0.7018 |
| **cosine_map@100** | **0.7074** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 1,024 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
The debriefing helps to ensure that all survivors are rescued, to attend to the physical welfare of each survivor, and to obtain information which may assist and improve SAR services. Proper debriefing techniques include:– due care to avoid worsening a survivor’s condition by excessive debriefing;– careful assessment of the survivor’s statements if the survivor is frightened or excited;– use of a calm voice in questioning;– avoidance of suggesting the answers when obtaining facts; and– explaining that the information requested is important for the success of the SAR operation, and possibly for future SAR operations.
| What are some proper debriefing techniques used in SAR services?
|
| Communicating with passengers is more difficult in remote areas where phone service may be inadequate or lacking. If phones do exist, calling the airline or shipping company may be the best way to check in and find out information. In more populated areas, local agencies may have an emergency evacuation plan or other useful plan that can be implemented.IE961E.indb 21 6/28/2013 10:29:55 AM
| What is a good way to check in and find out information in remote areas where phone service may be inadequate or lacking?
|
| Voice communication is the basis of telemedical advice. It allows free dialogue and contributes to the human relationship, which is crucial to any medical consultation. Text messages are a useful complement to the voice telemedical advice and add the reliability of writing. Facsimile allows the exchange of pictures or diagrams, which help to identify a symptom, describe a lesion or the method of treatment. Digital data transmissions (photographs or electrocardiogram) provide an objective and potentially crucial addition to descriptive and subjective clinical data.
| What are the types of communication methods used in telemedical advice?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters