--- license: creativeml-openrail-m base_model: "terminusresearch/pixart-900m-1024-ft-v0.6" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - simpletuner - full inference: true --- # pixart-900m-1024-ft-v0.7-stage2 This is a full rank finetune derived from [terminusresearch/pixart-900m-1024-ft-v0.6](https://huggingface.co/terminusresearch/pixart-900m-1024-ft-v0.6). The main validation prompt used during training was: ``` a cute anime character named toast, holding a sign that reads SOON ``` ## Validation settings - CFG: `4.0` - CFG Rescale: `0.7` - Steps: `30` - Sampler: `None` - Seed: `420420420` - Resolution: `1024x1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 0 - Training steps: 1500 - Learning rate: 1e-06 - Effective batch size: 16 - Micro-batch size: 16 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: epsilon - Rescaled betas zero SNR: False - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Enabled ## Datasets ### celebrities - Repeats: 4 - Total number of images: 208 - Total number of aspect buckets: 7 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### movieposters - Repeats: 25 - Total number of images: 192 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### normalnudes - Repeats: 5 - Total number of images: 992 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### moviecollection - Repeats: 0 - Total number of images: 1728 - Total number of aspect buckets: 16 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### experimental - Repeats: 0 - Total number of images: 2816 - Total number of aspect buckets: 2 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### ethnic - Repeats: 0 - Total number of images: 1808 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### gay - Repeats: 0 - Total number of images: 768 - Total number of aspect buckets: 6 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### cinemamix-1mp - Repeats: 0 - Total number of images: 7376 - Total number of aspect buckets: 5 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### nsfw-1024 - Repeats: 0 - Total number of images: 2224 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'pixart-900m-1024-ft-v0.7-stage2' pipeline = DiffusionPipeline.from_pretrained(model_id) prompt = "a cute anime character named toast, holding a sign that reads SOON" negative_prompt = "blurry, cropped, ugly" pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='blurry, cropped, ugly', num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=4.0, guidance_rescale=0.7, ).images[0] image.save("output.png", format="PNG") ```