File size: 3,706 Bytes
1a3f484
 
 
 
 
 
 
 
 
 
 
 
87e2b17
1a3f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87e2b17
1a3f484
 
 
 
87e2b17
1a3f484
 
 
87e2b17
1a3f484
 
 
 
 
 
 
 
 
 
f2d836f
92434e0
1a3f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92434e0
1a3f484
 
 
 
 
 
 
92434e0
1a3f484
 
 
 
 
 
 
f2d836f
1a3f484
 
 
 
 
 
43c0221
92434e0
1a3f484
 
 
 
 
 
f2d836f
22b25e3
1a3f484
 
 
 
 
 
f2d836f
 
1a3f484
 
 
 
 
 
 
92434e0
1a3f484
 
 
 
 
 
 
92434e0
1a3f484
 
 
 
 
 
f2d836f
92434e0
1a3f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87e2b17
1a3f484
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
license: creativeml-openrail-m
base_model: "terminusresearch/pixart-900m-1024-ft-v0.6"
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - full

inference: true

---

# pixart-900m-1024-ft-v0.7-stage2

This is a full rank finetune derived from [terminusresearch/pixart-900m-1024-ft-v0.6](https://huggingface.co/terminusresearch/pixart-900m-1024-ft-v0.6).



The main validation prompt used during training was:

```
a cute anime character named toast, holding a sign that reads SOON
```

## Validation settings
- CFG: `4.0`
- CFG Rescale: `0.7`
- Steps: `30`
- Sampler: `None`
- Seed: `420420420`
- Resolution: `1024x1024`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).




<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 9
- Training steps: 17500
- Learning rate: 1e-06
- Effective batch size: 16
  - Micro-batch size: 16
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Enabled


## Datasets

### celebrities
- Repeats: 4
- Total number of images: 208
- Total number of aspect buckets: 7
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### movieposters
- Repeats: 25
- Total number of images: 192
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### normalnudes
- Repeats: 5
- Total number of images: 992
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### moviecollection
- Repeats: 0
- Total number of images: 1728
- Total number of aspect buckets: 16
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### experimental
- Repeats: 0
- Total number of images: 2816
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### ethnic
- Repeats: 0
- Total number of images: 1808
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### gay
- Repeats: 0
- Total number of images: 768
- Total number of aspect buckets: 6
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### cinemamix-1mp
- Repeats: 0
- Total number of images: 7376
- Total number of aspect buckets: 5
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### nsfw-1024
- Repeats: 0
- Total number of images: 2224
- Total number of aspect buckets: 2
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random


## Inference


```python
import torch
from diffusers import DiffusionPipeline

model_id = 'pixart-900m-1024-ft-v0.7-stage2'
pipeline = DiffusionPipeline.from_pretrained(model_id)

prompt = "a cute anime character named toast, holding a sign that reads SOON"
negative_prompt = "blurry, cropped, ugly"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='blurry, cropped, ugly',
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=4.0,
    guidance_rescale=0.7,
).images[0]
image.save("output.png", format="PNG")
```