swinv2-tiny-patch4-window8-256-finetuned-og-dataset-10e
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0764
- Accuracy: 0.9708
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5433 | 1.0 | 546 | 0.3658 | 0.8538 |
0.366 | 2.0 | 1092 | 0.2136 | 0.9155 |
0.3109 | 3.0 | 1638 | 0.1381 | 0.9500 |
0.2501 | 4.0 | 2184 | 0.1058 | 0.9604 |
0.2515 | 5.0 | 2730 | 0.0936 | 0.9647 |
0.2311 | 6.0 | 3276 | 0.0764 | 0.9708 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.