--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - chat - TensorBlock - GGUF library_name: transformers ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## Qwen/Qwen2.5-1.5B-Instruct - GGUF This repo contains GGUF format model files for [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Qwen2.5-1.5B-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q2_K.gguf) | Q2_K | 0.630 GB | smallest, significant quality loss - not recommended for most purposes | | [Qwen2.5-1.5B-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q3_K_S.gguf) | Q3_K_S | 0.709 GB | very small, high quality loss | | [Qwen2.5-1.5B-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q3_K_M.gguf) | Q3_K_M | 0.768 GB | very small, high quality loss | | [Qwen2.5-1.5B-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q3_K_L.gguf) | Q3_K_L | 0.820 GB | small, substantial quality loss | | [Qwen2.5-1.5B-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q4_0.gguf) | Q4_0 | 0.871 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Qwen2.5-1.5B-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q4_K_S.gguf) | Q4_K_S | 0.876 GB | small, greater quality loss | | [Qwen2.5-1.5B-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q4_K_M.gguf) | Q4_K_M | 0.918 GB | medium, balanced quality - recommended | | [Qwen2.5-1.5B-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q5_0.gguf) | Q5_0 | 1.023 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Qwen2.5-1.5B-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q5_K_S.gguf) | Q5_K_S | 1.023 GB | large, low quality loss - recommended | | [Qwen2.5-1.5B-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q5_K_M.gguf) | Q5_K_M | 1.048 GB | large, very low quality loss - recommended | | [Qwen2.5-1.5B-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q6_K.gguf) | Q6_K | 1.185 GB | very large, extremely low quality loss | | [Qwen2.5-1.5B-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen2.5-1.5B-Instruct-GGUF/tree/main/Qwen2.5-1.5B-Instruct-Q8_0.gguf) | Q8_0 | 1.533 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Qwen2.5-1.5B-Instruct-GGUF --include "Qwen2.5-1.5B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Qwen2.5-1.5B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```