|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import base64 |
|
import logging |
|
import tiktoken |
|
import unicodedata |
|
from transformers import PreTrainedTokenizer, AddedToken |
|
from typing import Collection, Dict, List, Set, Tuple, Union |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"} |
|
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|""" \ |
|
r"""[^\r\n\p{L}\p{N}]?\p{L}+|""" \ |
|
r"""\p{N}|""" \ |
|
r""" ?[^\s\p{L}\p{N}]+[\r\n]*|""" \ |
|
r"""\s*[\r\n]+|""" \ |
|
r"""\s+(?!\S)|""" \ |
|
r"""\s+""" |
|
|
|
ENDOFTEXT = "<|endoftext|>" |
|
STARTOFTEXT = "<|startoftext|>" |
|
|
|
|
|
BOSTOKEN = "<|bos|>" |
|
EOSTOKEN = "<|eos|>" |
|
|
|
PADTOKEN = "<|pad|>" |
|
|
|
|
|
|
|
|
|
|
|
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(204))) |
|
|
|
SPECIAL_START_ID = 127957 |
|
|
|
|
|
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]: |
|
dic = {} |
|
rank = 0 |
|
for i, line in enumerate(open(tiktoken_bpe_file, "rb")): |
|
if line: |
|
token, _ = line.split() |
|
|
|
if base64.b64decode(token) in dic: |
|
raise ValueError(f"!ERROR: duplicated token {token} in your vocab file") |
|
dic[base64.b64decode(token)] = int(rank) |
|
rank += 1 |
|
return dic |
|
|
|
|
|
|
|
SPECIAL_TOKENS = tuple( |
|
enumerate( |
|
( |
|
( |
|
ENDOFTEXT, |
|
STARTOFTEXT, |
|
BOSTOKEN, |
|
EOSTOKEN, |
|
PADTOKEN, |
|
) |
|
+ EXTRAS |
|
), |
|
start=SPECIAL_START_ID, |
|
) |
|
) |
|
|
|
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS) |
|
|
|
|
|
class HYTokenizer(PreTrainedTokenizer): |
|
""" |
|
HunYuan Tokenizer Initialization. We extend `tiktoken` vocab and |
|
the default EOD & BOD special tokens are used for base model. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
|
|
errors (`str`): |
|
How to handle errors in decoding UTF-8 byte sequences. |
|
use ignore if you are in streaming inference |
|
|
|
bod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|startoftext|>""`): |
|
The beginning of document token that was used for training. can be modified by your task. |
|
default to be `<|startoftext|>` for released base model. |
|
|
|
eod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|endoftext|>""`): |
|
The end of document token that was used for training. can be modified by your task. |
|
default to be `<|endoftext|>` for released base model. |
|
|
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`): |
|
The start or sep special token that was used for some training tasks. |
|
default to be `<|startoftext|>` for released base model. |
|
It can be set to `<|bos|>` when you training for some other task |
|
|
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`): |
|
The end or sep special token that was used for some training tasks. |
|
default to be `<|endoftext|>` for released base model. |
|
It can be set to `<|eos|>` when you training for some other task |
|
|
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by |
|
attention mechanisms or loss computation. |
|
|
|
special_vocab_file (str, *optional*): |
|
Customed special extra vocab file, same format with hy.tiktoken. |
|
**Be careful** to use the extra special vocab, it will may cause the model loading collapse. |
|
The data line be like: |
|
`PHxhYmN8Pg== 0` |
|
the id followed `base64.encode(str)` is unused, we will reset them in case of collision |
|
|
|
add_bod_token (`bool`, *optional*, defaults to `True`): |
|
Whether or not to add an `bos_token` at the start of documents. |
|
This will effect `build_inputs_with_special_tokens` method |
|
|
|
add_eod_token (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an `eos_token` at the end of documents. |
|
This will effect `build_inputs_with_special_tokens` method |
|
|
|
""" |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
errors="replace", |
|
bod_token="<|startoftext|>", |
|
eod_token="<|endoftext|>", |
|
bos_token="<|startoftext|>", |
|
eos_token="<|endoftext|>", |
|
pad_token="<|pad|>", |
|
add_bod_token=True, |
|
add_eod_token=True, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.errors = errors |
|
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) |
|
self.special_tokens = { |
|
token: index |
|
for index, token in SPECIAL_TOKENS |
|
} |
|
|
|
enc = tiktoken.Encoding( |
|
"HunYuan", |
|
pat_str=PAT_STR, |
|
mergeable_ranks=self.mergeable_ranks, |
|
special_tokens=self.special_tokens, |
|
) |
|
assert ( |
|
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab |
|
), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding" |
|
|
|
self.decoder = { |
|
v: k for k, v in self.mergeable_ranks.items() |
|
} |
|
self.decoder.update({v: k for k, v in self.special_tokens.items()}) |
|
|
|
self.tokenizer = enc |
|
|
|
self.bod_token, self.bod_id = bod_token, self.special_tokens[bod_token] |
|
self.eod_token, self.eod_id = eod_token, self.special_tokens[eod_token] |
|
self.bos_token, self.bos_id = bos_token, self.special_tokens[bos_token] |
|
self.eos_token, self.eos_id = eos_token, self.special_tokens[eos_token] |
|
self.pad_token, self.pad_id = pad_token, self.special_tokens[pad_token] |
|
|
|
self._num_special_token = len(self.special_tokens) |
|
|
|
self.add_bod_token = add_bod_token |
|
self.add_eod_token = add_eod_token |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
del state["tokenizer"] |
|
return state |
|
|
|
def __setstate__(self, state): |
|
self.__dict__.update(state) |
|
enc = tiktoken.Encoding( |
|
"HunYuan", |
|
pat_str=PAT_STR, |
|
mergeable_ranks=self.mergeable_ranks, |
|
special_tokens=self.special_tokens, |
|
) |
|
self.tokenizer = enc |
|
|
|
def __len__(self) -> int: |
|
return self.tokenizer.n_vocab |
|
|
|
def get_vocab(self) -> Dict[bytes, int]: |
|
"""Return the vocabulary as a dictionary, without special tokens.""" |
|
return self.mergeable_ranks |
|
|
|
def convert_tokens_to_ids( |
|
self, tokens: Union[bytes, str, List[Union[bytes, str]]] |
|
) -> List[int]: |
|
ids = [] |
|
if isinstance(tokens, (str, bytes)): |
|
if tokens in self.special_tokens: |
|
return self.special_tokens[tokens] |
|
else: |
|
return self.mergeable_ranks.get(tokens) |
|
for token in tokens: |
|
if token in self.special_tokens: |
|
ids.append(self.special_tokens[token]) |
|
else: |
|
ids.append(self.mergeable_ranks.get(token)) |
|
return ids |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
bod_token_id = [self.bod_id] if self.add_bod_token else [] |
|
eod_token_id = [self.eod_id] if self.add_eod_token else [] |
|
output = bod_token_id + token_ids_0 + eod_token_id |
|
if token_ids_1 is not None: |
|
output = output + bod_token_id + token_ids_1 + eod_token_id |
|
return output |
|
|
|
def _add_tokens( |
|
self, |
|
new_tokens: Union[List[str], List[AddedToken]], |
|
special_tokens: bool = False, |
|
) -> List[Tuple[int, str]]: |
|
"""do not support adding tokens""" |
|
if not special_tokens and new_tokens: |
|
raise ValueError("Adding regular tokens is not supported") |
|
for token in new_tokens: |
|
surface_form = token.content if isinstance(token, AddedToken) else token |
|
if surface_form not in SPECIAL_TOKENS_SET: |
|
raise ValueError("Adding unknown special tokens is not supported") |
|
return 0 |
|
|
|
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]: |
|
""" |
|
Save only the vocabulary of the tokenizer (vocabulary). |
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
file_path = os.path.join(save_directory, "hy.tiktoken") |
|
with open(file_path, "w", encoding="utf8") as w: |
|
for k, v in self.mergeable_ranks.items(): |
|
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n" |
|
w.write(line) |
|
return (file_path,) |
|
|
|
def tokenize( |
|
self, |
|
text: str, |
|
allowed_special: Union[Set, str] = "all", |
|
disallowed_special: Union[Collection, str] = (), |
|
**kwargs, |
|
) -> List[Union[bytes, str]]: |
|
""" |
|
Converts a string in a sequence of tokens. |
|
Args: |
|
text (`str`): |
|
The sequence to be encoded. |
|
allowed_special (`Literal["all"]` or `set`): |
|
The surface forms of the tokens to be encoded as special tokens in regular texts. |
|
Default to "all". |
|
disallowed_special (`Literal["all"]` or `Collection`): |
|
The surface forms of the tokens that should not be in regular texts and trigger errors. |
|
Default to an empty tuple. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific encode method. |
|
Returns: |
|
`List[bytes|str]`: The list of tokens. |
|
""" |
|
tokens = [] |
|
text = unicodedata.normalize("NFC", text) |
|
|
|
|
|
for t in self.tokenizer.encode( |
|
text, allowed_special=allowed_special, disallowed_special=disallowed_special |
|
): |
|
tokens.append(self.decoder[t]) |
|
return tokens |
|
|
|
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str: |
|
""" |
|
Converts a sequence of tokens in a single string. |
|
""" |
|
text = "" |
|
temp = b"" |
|
for t in tokens: |
|
if isinstance(t, str): |
|
if temp: |
|
text += temp.decode("utf-8", errors=self.errors) |
|
temp = b"" |
|
text += t |
|
elif isinstance(t, bytes): |
|
temp += t |
|
else: |
|
raise TypeError("token should only be of type types or str") |
|
if temp: |
|
text += temp.decode("utf-8", errors=self.errors) |
|
return text |
|
|
|
@property |
|
def vocab_size(self): |
|
return self.tokenizer.n_vocab |
|
|
|
def _convert_id_to_token(self, index: int) -> Union[bytes, str]: |
|
"""Converts an id to a token, special tokens included""" |
|
if index in self.decoder: |
|
return self.decoder[index] |
|
raise ValueError("unknown ids") |
|
|
|
def _convert_token_to_id(self, token: Union[bytes, str]) -> int: |
|
"""Converts a token to an id using the vocab, special tokens included""" |
|
if token in self.special_tokens: |
|
return self.special_tokens[token] |
|
if token in self.mergeable_ranks: |
|
return self.mergeable_ranks[token] |
|
raise ValueError("unknown token") |
|
|
|
def _tokenize(self, text: str, **kwargs): |
|
""" |
|
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based |
|
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). |
|
Do NOT take care of added tokens. |
|
""" |
|
raise NotImplementedError |
|
|
|
def _decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False, |
|
errors: str = None, |
|
**kwargs, |
|
) -> str: |
|
if isinstance(token_ids, int): |
|
token_ids = [token_ids] |
|
if skip_special_tokens: |
|
token_ids = [i for i in token_ids if i < self.eod_id] |
|
return self.tokenizer.decode(token_ids, errors=errors or self.errors) |
|
|