import gc from datasets import load_dataset from transformers import PreTrainedTokenizerFast from tokenizers import Tokenizer, normalizers, pre_tokenizers, processors, decoders from tokenizers.models import BPE from tokenizers.trainers import BpeTrainer # # datasets # def batch_iterator(): # code dataset = load_dataset('bigcode/programming-languages-keywords', split='train') for row in dataset: for n in row['keywords']: yield n del dataset gc.collect() # code dataset = ( load_dataset('bigcode/the-stack-smol-xs', data_dir=f'data/{name}', split='train', trust_remote_code=True) for name in [ # 'batchfile' - unsafe # 'powershell' - unsafe 'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'bison', 'bluespec', 'c', 'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir', 'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java', 'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell', 'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'prolog', 'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme', 'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex', 'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig', ] ) for d in dataset: for text in d['content']: yield text del dataset gc.collect() ## math - unsafe # dataset = load_dataset('gair-prox/open-web-math-pro', split='train[:1%]') # # for text in dataset['text']: # yield text # # del dataset # gc.collect() # math dataset = load_dataset('OleehyO/latex-formulas', 'cleaned_formulas', split='train[:5%]') for text in dataset['latex_formula']: yield text del dataset gc.collect() # # text # dataset = load_dataset('JeanKaddour/minipile', split='train[:1%]') # # for text in dataset['text']: # yield text # # del dataset # gc.collect() # text dataset = ( load_dataset('saillab/taco-datasets', data_dir=data_dir, split='train[:5%]') for data_dir in [ 'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4', 'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k', ] ) for d in dataset: for row in d: for n in row: yield row['instruction'] + '\n' + row['input'] + '\n' + row['output'] del dataset gc.collect() # text dataset = ( load_dataset('xu-song/cc100-samples', lang, split='train[:5%]') for lang in [ 'en', 'hr', 'sr', 'ru', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu', ] ) for d in dataset: for text in d['text']: yield text del dataset gc.collect() # # special_tokens # special_tokens = [ '', '<|begin_of_text|>', '<|end_of_text|>', '<|start_header_id|>', '<|end_header_id|>', '<|eom_id|>', '<|eot_id|>', 'system', 'user', 'assistant', 'tool', 'agent', 'internal', # thinking # tool/function calling '', '', '', '', '', '', '', '', '"name"', '"arguments"', # # JSON Schema # # General Metadata Keywords '"$schema"', '"$id"', '"$ref"', '"$defs"', '"$anchor"', '"$dynamicAnchor"', '"$dynamicRef"', '"$vocabulary"', '"$comment"', # Data Types '"null"', '"boolean"', '"object"', '"array"', '"number"', '"string"', '"integer"', # Validation Keywords '"type"', '"enum"', '"const"', '"multipleOf"', '"maximum"', '"exclusiveMaximum"', '"minimum"', '"exclusiveMinimum"', '"maxLength"', '"minLength"', '"pattern"', '"additionalItems"', '"items"', '"prefixItems"', '"contains"', '"maxItems"', '"minItems"', '"uniqueItems"', '"maxProperties"', '"minProperties"', '"required"', '"properties"', '"patternProperties"', '"additionalProperties"', '"dependentRequired"', '"dependentSchemas"', '"propertyNames"', # Conditional Keywords '"if"', '"then"', '"else"', '"allOf"', '"anyOf"', '"oneOf"', '"not"', # Additional Keywords for Evaluation Control '"unevaluatedItems"', '"unevaluatedProperties"', # Informational Keywords '"title"', '"description"', '"default"', '"deprecated"', '"readOnly"', '"writeOnly"', '"examples"', # Content-Related Keywords '"contentEncoding"', '"contentMediaType"', '"contentSchema"', # Additional Keywords '"next"', # Typically used in reference to linked or next items '"value"', # Represents the value of a property or item # misc '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', # qa '', '', '', '', # thought '', '', '', '', '', '', '', '', # reasoning '', '', '', '', '', '', '', '', '', '', # reflection '', '', '', '', '', '', # graph '', '', '', '', '', '', '', '', '', '', # '', # '', ] for i in range(2, 25): special_tokens.append(' ' * i) for i in range(2, 25): special_tokens.append('\t' * i) for i in range(2, 25): special_tokens.append('\n' * i) for i in range(2, 25): special_tokens.append('\r' * i) for i in range(2, 25): special_tokens.append('\r\n' * i) for i in range(256): special_tokens.append(f'<0x{i:02X}>') for i in range(256): special_tokens.append(f'<|reserved_special_token_{i}|>') # # train tokenizer # bpe = BPE(unk_token='', fuse_unk=True, byte_fallback=True) tokenizer = Tokenizer(bpe) tokenizer.normalizer = normalizers.Sequence([ normalizers.Prepend('▁'), normalizers.Replace(' ', '▁'), ]) tokenizer.pre_tokenizer = None tokenizer.post_processor = processors.TemplateProcessing( single='$A:0', # $A represents the token, :0 specifies the type ID for single sequences pair='$A:0 $B:1', # For pairs, we specify type IDs for both tokens special_tokens=[], ) tokenizer.decoder = decoders.Sequence([ decoders.Replace('▁', ' '), decoders.ByteFallback(), decoders.Fuse(), decoders.Strip(' ', 1, 0), ]) trainer = BpeTrainer( vocab_size=32768, # 32 * 1024 min_frequency=10, special_tokens=special_tokens, max_token_length=8, ) tokenizer.train_from_iterator(batch_iterator(), trainer) tokenizer.save('../tokenizer.json') tokenizer.model.save('../') CHAT_TEMPLATE = ( "{{ bos_token }}" "{% for message in messages %}" "{{'<|start_header_id|>' + message['role'] + '<|end_header_id|>' + message['content'] + '<|eot_id|>'}}" "{% endfor %}" "{% if add_generation_prompt %}" "{{ '<|start_header_id|>assistant<|end_header_id|>' }}" "{% else %}" "{{ eos_token }}" "{% endif %}" ) fast_tokenizer = PreTrainedTokenizerFast( tokenizer_object=tokenizer, chat_template=CHAT_TEMPLATE, bos_token='<|begin_of_text|>', eos_token='<|end_of_text|>', unk_token='', clean_up_tokenization_spaces=True, ) fast_tokenizer.save_pretrained('../')