|
import json |
|
import re |
|
import warnings |
|
import pandas as pd |
|
import os |
|
import argparse |
|
import shutil |
|
import copy |
|
from pathlib import Path |
|
from joblib import Parallel, delayed |
|
from io import StringIO |
|
import pandas as pd |
|
|
|
from inference_encoder import inference_with_encoder, format_encoder_tables, read_df_head, build_encoder_table_part_content |
|
from utils import ( |
|
get_tool, |
|
filter_code, |
|
timeout, |
|
TimeoutException, |
|
load_json, |
|
) |
|
|
|
CODE_PREFIX = """import matplotlib.pyplot as plt |
|
from mplfonts import use_font |
|
import pandas as pd |
|
import numpy as np |
|
import seaborn as sns |
|
import warnings |
|
|
|
warnings.filterwarnings("ignore") |
|
# Fixing Chinese font issues |
|
use_font("Noto Serif CJK SC") |
|
plt.rcParams['font.sans-serif']=['SimHei'] |
|
plt.rcParams['axes.unicode_minus']=False\n""" |
|
|
|
def eval_outputs_parallel( |
|
llm_output: str, |
|
test_data: str, |
|
args, |
|
) -> dict: |
|
df_paths = test_data["table_paths"] |
|
df_names = test_data["df_names"] |
|
query = test_data["query"] |
|
table_paths = test_data["table_paths"] |
|
df = [pd.read_csv(path, low_memory=False) for path in df_paths] |
|
|
|
if args.slim: |
|
|
|
tool = get_tool(df) |
|
instruction = test_data["message"] |
|
else: |
|
tool = get_tool(df, df_names) |
|
instruction = test_data["instruction"] |
|
table_info = test_data["table_info"] |
|
df_info_simple_str = test_data["df_info_simple_str"] |
|
instruction = instruction.replace(table_info, df_info_simple_str) |
|
|
|
code, _ = filter_code(llm_output) |
|
|
|
eval_result_sample = {} |
|
|
|
try: |
|
|
|
if not code: |
|
observe = "Code Error: output empty code.." |
|
elif 'df.explode("Candidate")' in code: |
|
raise ValueError(f"df.explode error") |
|
else: |
|
with timeout(15): |
|
pure_code = CODE_PREFIX + code |
|
|
|
observe = tool.run(pure_code) |
|
|
|
if isinstance(observe, pd.DataFrame): |
|
observe = observe.head().to_markdown(index=False) |
|
else: |
|
observe = str(observe) |
|
except TimeoutException as e: |
|
observe = f"Timeout Error: code running time exceed 15s.." |
|
except SystemExit as e: |
|
observe = f"SystemExit Error: {str(e)}" |
|
except Exception as e: |
|
observe = f"Unexpected Error: {str(e)}" |
|
|
|
eval_result_sample["code"] = code |
|
eval_result_sample["llm_output"] = llm_output |
|
eval_result_sample["observe"] = observe |
|
eval_result_sample["flag"] = execution_eval(observe) |
|
eval_result_sample["query"] = query |
|
eval_result_sample["table_paths"] = table_paths |
|
eval_result_sample["instruction"] = instruction |
|
|
|
return eval_result_sample |
|
|
|
def execution_eval(observe: str) -> bool: |
|
""" |
|
Test whether the code generated by eval_llm can be executed. |
|
:param output: output code of llm generation |
|
:return: True or False |
|
""" |
|
|
|
pattern = re.compile(r"error|exception", re.IGNORECASE) |
|
try: |
|
res = not pattern.search(observe) |
|
except: |
|
res = True |
|
return res |
|
|
|
def extract_df_info(df: pd.DataFrame): |
|
sio = StringIO() |
|
df.columns = df.columns.str.strip() |
|
df = df.dropna(how="all").dropna(axis=1, how="all") |
|
df.info(buf=sio, memory_usage=False) |
|
|
|
return sio.getvalue() |
|
|
|
def build_single_slim_messages(test_dt): |
|
query = test_dt["query"] |
|
instruction = test_dt["instruction"] |
|
table_info = test_dt["table_info"] |
|
df_info_simple_str = test_dt["df_info_simple_str"] |
|
table_paths = test_dt["table_paths"] |
|
df_names = test_dt["df_names"] |
|
|
|
messages = [{ |
|
"role": "system", |
|
"content": "You are 数海闻涛, an expert Python data analyst developed by 浙江大学计算机创新技术研究院 (Institute of Computer Innovation of Zhejiang University, or ZJUICI). Your job is to help user analyze datasets by writing Python code. Each markdown codeblock you write will be executed in an IPython environment, and you will receive the execution output. You should provide results analysis based on the execution output.\nFor politically sensitive questions, security and privacy issues, or other non-data analyze questions, you will refuse to answer.\n\nRemember:\n- Comprehend the user's requirements carefully & to the letter.\n- If additional information is needed, feel free to ask the user.\n- Give a brief description for what you plan to do & write Python code.\n- You can use `read_df(uri: str) -> pd.DataFrame` function to read different file formats into DataFrame.\n- When creating charts, prefer using `seaborn`.\n- If error occurred, try to fix it.\n- Response in the same language as the user.\n- Today is 2024-09-26" |
|
}] |
|
|
|
table_info_messages = [] |
|
for idx, table_path in enumerate(table_paths): |
|
df_name = f"df{idx + 1}" |
|
file_name = os.path.basename(table_path) |
|
df_head_str, df = read_df_head(table_path, 3) |
|
content_msg = build_encoder_table_part_content([df_name], [table_path]) |
|
table_info_messages.extend(copy.deepcopy( |
|
[ |
|
{ |
|
"role": "user", |
|
"content": f"文件名称: '{file_name}'" |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": f"我已经收到您的数据文件,我需要查看文件内容以对数据集有一个初步的了解。首先我会读取数据到 `{df_name}` 变量中,并通过 `{df_name}.info` 查看 NaN 情况和数据类型。\n\n```python\n# Load the data into a DataFrame\n{df_name} = read_df('{file_name}')\n\n# Remove leading and trailing whitespaces in column names\n{df_name}.columns = {df_name}.columns.str.strip()\n\n# Remove rows and columns that contain only empty values\n{df_name} = {df_name}.dropna(how='all').dropna(axis=1, how='all')\n\n# Get the basic information of the dataset\n{df_name}.info(memory_usage=False)\n```" |
|
}, |
|
{ |
|
"role": "system", |
|
"content": f"```pycon\n{extract_df_info(df)}\n```" |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": f"接下来我将用 `{df_name}.head(3)` 来查看数据集的前 3 行。\n\n```python\n# Show the first 3 rows to understand the structure\n{df_name}.head(3)\n```" |
|
}, |
|
{ |
|
"role": "system", |
|
"content": [ |
|
{"type": "text", "text": f"```pycon\n{df_head_str}\n```"}, |
|
*content_msg, |
|
], |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": "我已经了解了数据集 {file_name} 的基本信息。请问我可以帮您做些什么?" |
|
} |
|
]) |
|
) |
|
|
|
messages.extend(table_info_messages) |
|
messages.append({"role": "user", "content": query}) |
|
|
|
return messages |
|
|
|
def build_tableqa_messages_from_csv_file(test_dt): |
|
query = test_dt["query"] |
|
instruction = test_dt["instruction"] |
|
table_info = test_dt["table_info"] |
|
df_info_simple_str = test_dt["df_info_simple_str"] |
|
table_paths = test_dt["table_paths"] |
|
df_names = test_dt["df_names"] |
|
|
|
|
|
instruction_list = instruction.split(table_info) |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a helpful assistant.", |
|
} |
|
] |
|
messages.append({ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": instruction_list[0]}, |
|
{"type": "text", "text": df_info_simple_str}, |
|
*build_encoder_table_part_content(df_names, table_paths), |
|
{"type": "text", "text": instruction_list[1]}, |
|
], |
|
}) |
|
return messages |
|
|
|
def format_inputs(test_datas: list[dict],args) -> list[list[dict]]: |
|
"""Format inputs to the required messages""" |
|
|
|
format_message_datas = [] |
|
for idx, test_dt in enumerate(test_datas): |
|
if args.slim: |
|
messages = build_single_slim_messages(test_dt) |
|
else: |
|
messages = build_tableqa_messages_from_csv_file(test_dt) |
|
if messages: |
|
format_message_datas.append(messages) |
|
|
|
return format_message_datas |
|
|
|
|
|
def main(args): |
|
warnings.filterwarnings('ignore') |
|
eval_dataset_path = args.eval_dataset_path |
|
eval_results_save_path = args.eval_results_save_path |
|
|
|
eval_dataset_path = args.eval_dataset_path |
|
test_datas = load_json(eval_dataset_path) |
|
format_message_datas = format_inputs(test_datas, args) |
|
print("Generating eval answers now..") |
|
|
|
model_outputs_text = inference_with_encoder(args, format_message_datas) |
|
print("model_outputs_text", len(model_outputs_text)) |
|
|
|
eval_answers = Parallel(n_jobs=48)( |
|
delayed(eval_outputs_parallel)(model_outputs_text[i], test_datas[i],args) |
|
for i in range(len(test_datas)) |
|
) |
|
|
|
execute_passed = 0 |
|
total_len = len(eval_answers) |
|
for eval_answer in eval_answers: |
|
execute_passed += int(eval_answer["flag"]) |
|
print(f"Sample length: {total_len}. ") |
|
print( |
|
f"Execute Passed: {execute_passed}." f"\tExecute pass-rate is:", |
|
round(execute_passed / total_len, 3), |
|
) |
|
|
|
with open(eval_results_save_path, "w", encoding="utf-8") as f: |
|
json.dump(eval_answers, f, ensure_ascii=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
output_dir = Path(__file__).parent / "images" |
|
if os.path.exists(output_dir): |
|
if not os.access(output_dir, os.W_OK): |
|
shutil.rmtree(output_dir) |
|
os.makedirs(output_dir) |
|
os.chmod(output_dir, 0o777) |
|
print("not write permission, makedir:", output_dir) |
|
else: |
|
print(f"{output_dir} exists!") |
|
else: |
|
os.makedirs(output_dir) |
|
os.chmod(output_dir, 0o777) |
|
print("makedir:", output_dir) |
|
parser = argparse.ArgumentParser(description="eval tableqa python code") |
|
parser.add_argument( |
|
"--gpus_num", type=int, default=1, help="the number of GPUs you want to use." |
|
) |
|
parser.add_argument( |
|
"--temperature", type=float, default=0.01, help="Temperature setting" |
|
) |
|
|
|
parser.add_argument( |
|
"--template", |
|
type=str, |
|
choices=[None, "llama3", "baichuan", "chatglm"], |
|
default=None, |
|
help="The template must be specified if not present in the config file", |
|
) |
|
|
|
parser.add_argument( |
|
"--model_path", type=str, required=True, help="Path to the model" |
|
) |
|
parser.add_argument( |
|
"--model_type", |
|
choices=["base_model", "chat_model"], |
|
default="chat_model", |
|
help="Base model or Chat model", |
|
) |
|
parser.add_argument( |
|
"--slim", |
|
action="store_true", |
|
help="slim data format", |
|
) |
|
parser.add_argument( |
|
"--max_new_tokens", |
|
type=int, |
|
default=1024, |
|
help="Maximum number of output tokens", |
|
) |
|
parser.add_argument("--max_model_len", type=int, default=10000, help="Cutoff length") |
|
parser.add_argument( |
|
"--eval_dataset_path", |
|
type=str, |
|
default="table_related_benchmarks/evalset/table_qa_execuate_test/test_datas.json", |
|
help="Test Set Path", |
|
) |
|
|
|
parser.add_argument( |
|
"--eval_results_save_path", |
|
type=str, |
|
default="output/result_table_qa.json", |
|
help="Max iteration for llm to run each code correction task", |
|
) |
|
args = parser.parse_args() |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
main(args) |
|
|