File size: 6,254 Bytes
2a26d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# Benchmarks evaluations for tablegpt
<p align="center">
<a href="#-About">🔥About</a> •
<a href="#-Usage">💻Usage</a> •
</p>
## About
</div>
This is a repo opened for evaluation on different table-related benchmarks for tablegpt.
Given the complexity of table QA tasks and the uncertainty of input instructions, we provide evaluation datasets and scripts for 7 capabilities:
- ✨Code correction based on tables
- ✨Refusal of ambiguous questions
- ✨Table & field recall in multi-table scenarios
- ✨Table QA output code executable
- ✨Table-Bench.
- ✨Text2Sql.
- ✨TableInstruct, which includes a series of table-related evaluation benchmarks.
In addition, we have integrated other general abilities benchmarks like HumanEval, MBPP and MMLU/CMMLU.
We have built an inference method based on the local model path using vLLM as the backend, and defined a set of example prompts templates for the above benchmarks.
## Usage
</div>
</details>
⏬ To use this framework, please first install the repository from GitHub:
```shell
git clone https://github.com/tablegpt/tablegpt-eval
cd tablegpt-eval
pip install -r requirements.txt
```
</div>
</details>
[!Tips]
1. You can run all the benchmarks with the default params by running command `bash run_benchmarks.sh`.
2. If you want more configuration options for running parameters, refer to the typical Python script.
3. Download the .db files before running text2sql evaluation scripts. Download urls refer to `/table_related_benchmarks/evalset/bird_data/dev_databases/README.md`(Bird dev) & `table_related_benchmarks/evalset/spider_data/dev_database/README.md` (Spider dev) & `table_related_benchmarks/evalset/spider_data/test_database/README.md` (Spider test).
### Code correction eval
We provide a non-executable eval dataset based on the Python language. Eval dataset path:
```python
table_related_benchmarks/evalset/code_correction_test/correction_set.json
```
We use the ***executable_pass_rate*** and ***absolute_match_rate*** of the corrected code in pass-1 to evaluate the model's code correction ability. You can perform code-correction evaluation by running the following Python command:
```bash
python table_related_benchmarks/run_code_correction_eval.py \
--model_path <EVAL MODEL PATH> \
--template <CHAT_TEMPLATE_NAME, support [llama3, baichuan, chatglm, None], default None> \
--eval_results_save_path <PATH TO SAVE THE EVAL RESULTS> \
--gpus_num <NUMBER OF GPU TO RUN INFERENCE> \
--temperature <ONE OF THE INFERENCE PARAMETER>
```
### Ambiguous reject eval
We provide 298 table-based queries, with a ratio of about 1:3 between queries marked as ambiguous (to be rejected) and queries that should be accepted and correctly answered. Dataset path:
```python
# test queries
evalset/reject_test/test_query.json
# queries with ground truth
evalset/reject_test/ground_truth.json
```
We use **accuracy**, **recall**, and **F1 score** as metrics to evaluate the LLM's ability in this task. You can perform reject evaluation by running the following Python command:
```bash
python table_related_benchmarks/run_reject_eval.py \
--model_path <EVAL MODEL PATH> \
--save_path <LLM OUTPUT CONTENT SAVE PATH> \
--gpus_num <NUMBER OF GPU TO RUN INFERENCE> \
--temperature <ONE OF THE INFERENCE PARAMETER>
```
### Table&Fields recall eval
The provided eval dataset path:
```python
table_related_benchmarks/evalset/retrieval_test/recall_set.json
```
We use a series of evaluation metrics such as **recall**, **precision**, **Jaccard similarity**, and **Hamming loss** to assess the LLM's performance in table and field retrieval tasks. You can perform recall evaluation by running the following Python command:
```bash
python table_related_benchmarks/run_recall_eval.py \
--model_path <EVAL MODEL PATH> \
--temperature <TEMPERATURE> \
--gpus_num <NUMBER OF GPU TO RUN INFERENCE>
```
### Table QA executable
Provide 2178 table based queries, eval dataset path:
```python
table_related_benchmarks/evalset/table_qa_execuate_test/tableqa_samples_with_paths.jsonl
```
We employ ***executable_pass_rate*** of pass-1 to employ the model's tableQA code generation ability. You can perform tableQA evaluation by running the following Python command:
```bash
python table_related_benchmarks/run_tableqa_execution_eval.py \
--model_path <EVAL MODEL PATH> \
--temperature <ONE OF THE INFERENCE PARAMETER> \
--gpus_num <NUMBER OF GPU TO RUN INFERENCE>
```
### TableBench evaluation
The provided eval dataset path:
```python
table_related_benchmarks/evalset/TableBench
```
In the evaluation of TableBench, Rough-L was used to assess general QA questions, while pass@1 was used as the evaluation metric for visualization-type samples. You can perform TableBench evaluation by the following command:
```bash
python table_related_benchmarks/run_table_bench_eval.py \
--model_path <EVAL MODEL PATH> \
--temperature <ONE OF THE INFERENCE PARAMETER> \
--gpus_num <NUMBER OF GPU TO RUN INFERENCE>
```
### TableInstruct
The provided eval dataset path:
```python
table_related_benchmarks/evalset/TableInstruct
```
You can perform TableInstruct evaluation by the following command:
```bash
python table_related_benchmarks/run_table_instruct_eval.py \
--model_path <EVAL MODEL PATH> \
--temperature <ONE OF THE INFERENCE PARAMETER> \
--gpus_num <NUMBER OF GPU TO RUN INFERENCE>
```
### Text2Sql
```bash
python table_related_benchmarks/run_text2sql_eval.py --model_path <EVAL MODEL PATH>
```
### HumanEval
Perform HumanEval evaluation by the following command:
```bash
python general_benchmarks/HumanEval/eval_instruct_vllm.py --model_path <EVAL MODEL PATH>
```
### MBPP
Perform MBPP evaluation by the following command:
```bash
python general_benchmarks/MBPP/eval_instruct_vllm.py --model_path <EVAL MODEL PATH>
```
### MMLU & CMMLU
```bash
python general_benchmarks/MMLU/evaluator.py --task <mmlu or cmmlu> --lang <en or zh> --model_path <EVAL MODEL PATH>
```
|