File size: 19,955 Bytes
2a26d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoConfig
import json, os
import sys
from table_instruct.eval.metric.eval_tableinstruct import (
eval_row_pop_map,
eval_col_pop_map,
eval_hitab_ex,
eval_tabfact_acc,
eval_col_type_f1,
eval_ent_link_acc,
eval_bleu
)
from vllm import LLM, SamplingParams
EOT_TOKEN = "<|EOT|>"
import logging
import os
import datetime
import warnings
warnings.filterwarnings("ignore")
PROMPT_TEMPLATE = """"
table:
{table_info}
Question: {query}
Answer:
"""
def save_json(result,save_path):
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with open(save_path, 'w', encoding='utf-8') as f:
json.dump(result, f, ensure_ascii=False, indent=4)
def mklog():
now = datetime.datetime.now()
file_path = 'log/' + now.strftime('%Y-%m-%d_%H-%M-%S')
filename = file_path + '/log.txt'
if not os.path.exists(file_path):
os.makedirs(file_path)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
file_handler = logging.FileHandler(filename)
file_handler.setLevel(logging.INFO)
# 定义日志输出格式
formatter = logging.Formatter('%(asctime)s-%(levelname)s-%(pathname)s-%(lineno)d|: %(message)s')
# 将格式器应用到处理器上
file_handler.setFormatter(formatter)
# 将处理器添加到 logger 实例中
logger.addHandler(file_handler)
logger.propagate = False
return file_path
def build_instruction_prompt_tableinstruct(example):
#按照tableinstruct的原本的格式来做的,跑出来效果不好
if "input" in example:
table_infos = example["input"]
elif "input_seg" in example:
table_infos = example["input_seg"]
else:
table_infos = ''
if len(table_infos) > 29897:
table_infos=table_infos[:29897]+'...'
query = example["question"]
instruction=example["instruction"]
decoder_input_text = f'''<|im_start|>system
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
<|im_end|>
<|im_start|>user
### Instruction:
{instruction}
### Input:
{table_infos}
### Question:
{query}
### Response:<|im_end|>
<|im_start|>assistant
'''
return decoder_input_text
def build_instruction_prompt(example):
if "input" in example:
table_infos = example["input"]
elif "input_seg" in example:
table_infos = example["input_seg"]
else:
table_infos = ''
#if len(table_infos) > 29997:
# table_infos=table_infos[:29997]+'...'
#table_infos = example["input"]
query = example["question"]
instruction=example["instruction"]
decoder_input_text = f'''<|im_start|>system
{instruction}
<|im_end|>
<|im_start|>user
table:
{table_infos}
Question: {query}
Answer:<|im_end|>
<|im_start|>assistant
'''
return decoder_input_text
import json
@torch.inference_mode()
def evaluate(model, tokenizer, output_path, all_data, inference_type, inference_config):
import tqdm
logging.info(f'output_path:{output_path}')
inference_para = json.load(open(inference_config))
generate_para = inference_para['generate_para']
if inference_type=='TGI':
for index, conv in tqdm.tqdm(enumerate(all_data), total=len(all_data)):
prompt = build_instruction_prompt(conv)
logging.info(f"prompt for data{index}: {prompt}")
input_ids=tokenizer.encode(prompt, return_tensors='pt').to(model.device)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=model.device)
generated_ids = model.generate(input_ids, eos_token_id=tokenizer.eos_token_id,
attention_mask=attention_mask, pad_token_id=tokenizer.eos_token_id, **generate_para)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(input_ids, generated_ids)
]
output_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
logging.info(f"output for data{index}: {output_str}")
output_dict = {
**conv,
'predict': output_str
}
with open(os.path.join(output_path, 'output.jsonl'), 'a') as f:
f.write(json.dumps(output_dict) + '\n')
elif inference_type=='vLLM':
prompt_batch = []
for index, conv in tqdm.tqdm(enumerate(all_data), total=len(all_data)):
# prompt = build_instruction_prompt(conv)
if "input_seg" in conv:
table_info = conv["input_seg"]
elif "input" in conv:
table_info = conv["input"]
else:
table_info = ""
query = conv["question"]
instruction = conv["instruction"]
# table_info = conv["input"]
prompt_str = PROMPT_TEMPLATE.format(query=query, table_info=table_info)
msg = [{"role": "system", "content": instruction},{"role": "user", "content": prompt_str}]
prompt = tokenizer.apply_chat_template(
msg, tokenize=False, add_generation_prompt=True
)
prompt_batch.append(prompt)
sampling_params = SamplingParams(**generate_para)
outputs = model.generate(prompt_batch, sampling_params)
for output, input_data in zip(outputs, all_data):
input_data["predict"] = output.outputs[0].text
with open(os.path.join(output_path, 'output.jsonl'), 'a') as f:
f.write(json.dumps(input_data) + '\n')
@torch.inference_mode()
def evaluate_all(model, tokenizer, json_path, output_path, num_gpus_total, num_gpus_per_model, eval_type, inference_type, inference_config):
if not os.path.exists(output_path):
os.makedirs(output_path)
#一个测试单元
for file_name in ['output.jsonl']:
with open(os.path.join(output_path, file_name), 'w') as f:
f.write('')
if eval_type == 'row_pop':
all_data=[]
for file_name in ['part_0.json','part_1.json','part_2.json','part_3.json','part_4.json','part_5.json']:
sub_path = os.path.join(json_path,file_name)
sub_data = json.load(open(sub_path))
all_data += sub_data
else:
all_data = json.load(open(json_path))
#all_data=all_data[:10]#小样本测试
assert num_gpus_total % num_gpus_per_model == 0
use_ray = num_gpus_total // num_gpus_per_model > 1
if use_ray:
import ray
ray.init()
get_answers_func = ray.remote(num_gpus=num_gpus_per_model)(
evaluate
).remote
else:
get_answers_func = evaluate
chunk_size = len(all_data) // (num_gpus_total // num_gpus_per_model)
ans_handles = []
for i in range(0, len(all_data), chunk_size):
cur_data = all_data[i:i + chunk_size]
ans_handles.append(get_answers_func(model, tokenizer, output_path, cur_data, inference_type, inference_config))
if use_ray:
ray.get(ans_handles)
result_path = os.path.join(output_path, 'result.json')
with open(os.path.join(output_path, 'output.jsonl'), 'r') as f:
dt = [json.loads(line) for line in f]
result={}
if eval_type == 'hitab':
result = eval_hitab_ex(dt)
elif eval_type in ['fetaqa', 'kvret', 'totto']:
result = eval_bleu(dt)
elif eval_type == 'Ent_link':
result = eval_ent_link_acc(dt)#这个acc特殊
elif eval_type == 'col_pop':
result = eval_col_pop_map(dt)
elif eval_type == 'row_pop':
result = eval_row_pop_map(dt)#这两个map稍有不同
elif eval_type in ['col_type', 'rel_extraction']:
result = eval_col_type_f1(dt)
elif eval_type in ['tabfact', 'feverous', 'hybridqa', 'wikisql', 'wikitq']:
result = eval_tabfact_acc(dt)
save_json(result, result_path)
def evaluate_tableinstruct(model_path, json_path, output_path, num_gpus_total, num_gpus_per_model, dataset_part, inference_type, inference_config):
inference_para = json.load(open(inference_config))
load_para = inference_para['load_para']
if inference_type=='TGI':
model = AutoModelForCausalLM.from_pretrained(model_path,**load_para).to('cuda')
model.eval()
elif inference_type=='vLLM':
load_para['model']=model_path
model = LLM(**load_para)
tokenizer = AutoTokenizer.from_pretrained(model_path)
if dataset_part in['in_domain_test','all_test']:
try:
# row_pop
logging.info('Processing row_pop ...')
print('Processing row_pop ...')
json_path_tmp = os.path.join(json_path, 'in_domain_test', 'row_pop_test')#这个特殊
output_path_tmp = os.path.join(output_path, 'in_domain_test', 'row_pop_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='row_pop',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing row_pop error %s', e, exc_info=True)
print('Processing row_pop error')
try:
# col_pop
logging.info('Processing col_pop ...')
print('Processing col_pop ...')
json_path_tmp = os.path.join(json_path, 'in_domain_test', 'col_pop_test.json')
output_path_tmp = os.path.join(output_path, 'in_domain_test', 'col_pop_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='col_pop',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing col_pop error %s', e, exc_info=True)
print('Processing col_pop error')
try:
# col_type
logging.info('Processing col_type ...')
print('Processing col_type ...')
json_path_tmp = os.path.join(json_path, 'in_domain_test', 'col_type_test.json')
output_path_tmp = os.path.join(output_path, 'in_domain_test', 'col_type_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='col_type',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing col_type error %s', e, exc_info=True)
print('Processing col_type error')
try:
#Ent_link
logging.info('Processing Ent_link ...')
print('Processing Ent_link ...')
json_path_tmp = os.path.join(json_path, 'in_domain_test', 'ent_link_test.json')
output_path_tmp = os.path.join(output_path, 'in_domain_test', 'ent_link_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='Ent_link',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing Ent_link error %s', e, exc_info=True)
print('Processing Ent_link error')
try:
#FetaQA
logging.info('Processing FetaQA ...')
print('Processing FetaQA ...')
json_path_tmp = os.path.join(json_path, 'in_domain_test', 'fetaqa_test.json')
output_path_tmp = os.path.join(output_path, 'in_domain_test', 'fetaqa_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model, eval_type='fetaqa',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing FetaQA error %s', e, exc_info=True)
print('Processing FetaQA error')
try:
#Hitab
logging.info('Processing Hitab ...')
print('Processing Hitab ...')
json_path_tmp = os.path.join(json_path, 'in_domain_test' ,'hitab_test.json')
output_path_tmp = os.path.join(output_path, 'in_domain_test' ,'hitab_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model, eval_type='hitab',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing FetaQA error %s', e, exc_info=True)
print('Processing FetaQA error')
try:
# rel_extraction
logging.info('Processing rel_extraction ...')
print('Processing rel_extraction ...')
json_path_tmp = os.path.join(json_path, 'in_domain_test', 'rel_extraction_test.json')
output_path_tmp = os.path.join(output_path, 'in_domain_test', 'rel_extraction_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='rel_extraction',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing rel_extraction error %s', e, exc_info=True)
print('Processing rel_extraction error')
try:
# rel_extraction
logging.info('Processing tabfact ...')
print('Processing tabfact ...')
json_path_tmp = os.path.join(json_path, 'in_domain_test', 'tabfact_test.json')
output_path_tmp = os.path.join(output_path, 'in_domain_test', 'tabfact_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='tabfact',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing tabfact error %s', e, exc_info=True)
print('Processing tabfact error')
if dataset_part in['out_of_domain_test','all_test']:
try:
#Feverous
logging.info('Processing Feverous ...')
print('Processing Feverous ...')
json_path_tmp = os.path.join(json_path, 'out_of_domain_test', 'feverous_eval.json')
output_path_tmp = os.path.join(output_path, 'out_of_domain_test', 'feverous_eval')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='feverous',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing Feverous error %s', e, exc_info=True)
print('Processing Feverous error')
try:
# HybridQA
logging.info('Processing HybridQA ...')
print('Processing HybridQA ...')
json_path_tmp = os.path.join(json_path, 'out_of_domain_test', 'hybridqa_eval.json')
output_path_tmp = os.path.join(output_path, 'out_of_domain_test', 'hybridqa_eval')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='hybridqa',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing HybridQA error %s', e, exc_info=True)
print('Processing HybridQA error')
try:
# KVRet
logging.info('Processing KVRet ...')
print('Processing KVRet ...')
json_path_tmp = os.path.join(json_path, 'out_of_domain_test', 'kvret_test.json')
output_path_tmp = os.path.join(output_path, 'out_of_domain_test', 'kvret_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='kvret',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing KVRet error %s', e, exc_info=True)
print('Processing KVRet error')
try:
# ToTTo
logging.info('Processing ToTTo ...')
print('Processing ToTTo ...')
json_path_tmp = os.path.join(json_path, 'out_of_domain_test', 'totto_eval.json')
output_path_tmp = os.path.join(output_path, 'out_of_domain_test', 'totto_eval')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='totto',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing ToTTo error %s', e, exc_info=True)
print('Processing ToTTo error')
try:
# WikiSQL
logging.info('Processing WikiSQL ...')
print('Processing WikiSQL ...')
json_path_tmp = os.path.join(json_path, 'out_of_domain_test', 'wikisql_test.json')
output_path_tmp = os.path.join(output_path, 'out_of_domain_test', 'wikisql_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='wikisql',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing WikiSQL error %s', e, exc_info=True)
print('Processing WikiSQL error')
try:
# WikiTQ
logging.info('Processing WikiTQ ...')
print('Processing WikiTQ ...')
json_path_tmp = os.path.join(json_path, 'out_of_domain_test', 'wikitq_test.json')
output_path_tmp = os.path.join(output_path, 'out_of_domain_test', 'wikitq_test')
evaluate_all(model, tokenizer, json_path_tmp, output_path_tmp, num_gpus_total, num_gpus_per_model,
eval_type='wikitq',
inference_type=inference_type, inference_config=inference_config)
except Exception as e:
logging.info('Processing WikiTQ error %s', e, exc_info=True)
print('Processing WikiTQ error')
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--json-path', type=str, default='table_related_benchmarks/evalset/TableInstruct/eval_data')
parser.add_argument('--model-path', type=str, default='/data4/sft_output/qwen2.5-7b-ins-1012/checkpoint-3200')
parser.add_argument('--output-path', type=str, default='table_related_benchmarks/evalset/TableInstruct/eval_data/eval_output-sft')
parser.add_argument('--num-gpus-total', type=int, default=1)
parser.add_argument('--num-gpus-per-model', type=int, default=1)
parser.add_argument('--dataset-part', type=str, default='all_test',
choices=['in_domain_test', 'out_of_domain_test', 'all_test'])
parser.add_argument('--inference-type', type=str, default='vLLM',
choices=['TGI', 'vLLM'])
parser.add_argument('--inference-config', type=str, default='table_related_benchmarks/table_instruct/eval/vLLM_config.json')
args = parser.parse_args()
mklog()#这个log其实是有返回值的,但是这里有output_log,暂时不必要
logging.info(vars(args))
evaluate_tableinstruct(**vars(args))
#evaluate_all(**vars(args))
if __name__ == '__main__':
main()
|