--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: tsec_vit_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7689873417721519 --- # tsec_vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4821 - Accuracy: 0.7690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4963 | 0.9873 | 39 | 0.5699 | 0.6725 | | 0.4959 | 2.0 | 79 | 0.5485 | 0.7152 | | 0.4879 | 2.9873 | 118 | 0.4886 | 0.7690 | | 0.5243 | 4.0 | 158 | 0.5133 | 0.7468 | | 0.4654 | 4.9873 | 197 | 0.4927 | 0.7516 | | 0.4776 | 6.0 | 237 | 0.4901 | 0.7642 | | 0.4767 | 6.9873 | 276 | 0.4652 | 0.7816 | | 0.4465 | 8.0 | 316 | 0.4795 | 0.7642 | | 0.467 | 8.9873 | 355 | 0.4691 | 0.7484 | | 0.4121 | 9.8734 | 390 | 0.4821 | 0.7690 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1