speech-test
commited on
Commit
•
7c506fb
1
Parent(s):
e370a4d
Update info
Browse files
README.md
CHANGED
@@ -6,7 +6,6 @@ tags:
|
|
6 |
- speech
|
7 |
- audio
|
8 |
- hubert
|
9 |
-
- s3prl
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
@@ -16,13 +15,12 @@ license: apache-2.0
|
|
16 |
|
17 |
This is a ported version of [S3PRL's Hubert for the SUPERB Intent Classification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/fluent_commands).
|
18 |
|
19 |
-
The base model is [hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960)
|
20 |
-
|
21 |
-
When using the model make sure that your speech input is also sampled at 16Khz.
|
22 |
|
23 |
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
|
24 |
|
25 |
-
## Task description
|
26 |
|
27 |
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
|
28 |
speakers. SUPERB uses the
|
@@ -38,20 +36,26 @@ For the original model's training and evaluation instructions refer to the
|
|
38 |
You can use the model directly like so:
|
39 |
```python
|
40 |
import torch
|
41 |
-
import
|
42 |
from datasets import load_dataset
|
43 |
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ic")
|
48 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ic")
|
49 |
|
50 |
-
audio = np.array(superb_ks[0]["speech"])
|
51 |
# compute attention masks and normalize the waveform if needed
|
52 |
-
inputs = feature_extractor(
|
53 |
|
54 |
-
logits = model(**inputs).logits
|
55 |
|
56 |
action_ids = torch.argmax(logits[:, :6], dim=-1).tolist()
|
57 |
action_labels = [model.config.id2label[_id] for _id in action_ids]
|
@@ -67,9 +71,9 @@ location_labels = [model.config.id2label[_id + 20] for _id in location_ids]
|
|
67 |
|
68 |
The evaluation metric is accuracy.
|
69 |
|
70 |
-
|
|
71 |
-
|
72 |
-
|
73 |
|
74 |
### BibTeX entry and citation info
|
75 |
|
|
|
6 |
- speech
|
7 |
- audio
|
8 |
- hubert
|
|
|
9 |
license: apache-2.0
|
10 |
---
|
11 |
|
|
|
15 |
|
16 |
This is a ported version of [S3PRL's Hubert for the SUPERB Intent Classification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/fluent_commands).
|
17 |
|
18 |
+
The base model is [hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960), which is pretrained on 16kHz
|
19 |
+
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
|
|
|
20 |
|
21 |
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
|
22 |
|
23 |
+
## Task and dataset description
|
24 |
|
25 |
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
|
26 |
speakers. SUPERB uses the
|
|
|
36 |
You can use the model directly like so:
|
37 |
```python
|
38 |
import torch
|
39 |
+
import librosa
|
40 |
from datasets import load_dataset
|
41 |
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
|
42 |
|
43 |
+
def map_to_array(example):
|
44 |
+
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
|
45 |
+
example["speech"] = speech
|
46 |
+
return example
|
47 |
+
|
48 |
+
# load a demo dataset and read audio files
|
49 |
+
dataset = load_dataset("anton-l/superb_demo", "ic", split="test")
|
50 |
+
dataset = dataset.map(map_to_array)
|
51 |
+
|
52 |
model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ic")
|
53 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ic")
|
54 |
|
|
|
55 |
# compute attention masks and normalize the waveform if needed
|
56 |
+
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
|
57 |
|
58 |
+
logits = model(**inputs).logits
|
59 |
|
60 |
action_ids = torch.argmax(logits[:, :6], dim=-1).tolist()
|
61 |
action_labels = [model.config.id2label[_id] for _id in action_ids]
|
|
|
71 |
|
72 |
The evaluation metric is accuracy.
|
73 |
|
74 |
+
| | **s3prl** | **transformers** |
|
75 |
+
|--------|-----------|------------------|
|
76 |
+
|**test**| `0.9834` | `N/A` |
|
77 |
|
78 |
### BibTeX entry and citation info
|
79 |
|