|
import os |
|
from typing import Optional, Tuple, List, Union |
|
from shutil import copyfile |
|
import torch |
|
|
|
from transformers import PreTrainedTokenizer, RobertaTokenizer, GPT2Tokenizer, BertTokenizer |
|
from transformers.utils import logging |
|
from transformers.tokenization_utils_base import BatchEncoding |
|
from transformers.models.auto.tokenization_auto import get_tokenizer_config |
|
|
|
from transformers.utils.generic import _is_torch_device |
|
import sentencepiece as spm |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class GLMBatchEncoding(BatchEncoding): |
|
|
|
def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding": |
|
""" |
|
Send all values to device by calling `v.to(device)` (PyTorch only). |
|
Args: |
|
device (`str` or `torch.device`): The device to put the tensors on. |
|
Returns: |
|
[`BatchEncoding`]: The same instance after modification. |
|
""" |
|
|
|
|
|
|
|
|
|
if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int): |
|
self.data = {k: v.to(device=device) if torch.is_tensor(v) else v for k, v in self.data.items()} |
|
else: |
|
logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.") |
|
return self |
|
|
|
|
|
class GLMTokenizerMixin: |
|
@property |
|
def sop_token(self) -> Optional[str]: |
|
return "<|startofpiece|>" |
|
|
|
@property |
|
def sop_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the start token in the vocabulary, used when training a model with autoregressive blank filling. |
|
""" |
|
return self.convert_tokens_to_ids(self.sop_token) |
|
|
|
@property |
|
def eop_token(self) -> Optional[str]: |
|
return "<|endofpiece|>" |
|
|
|
@property |
|
def eop_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the end token in the vocabulary, used when training a model with autoregressive blank filling. |
|
""" |
|
return self.convert_tokens_to_ids(self.eop_token) |
|
|
|
@property |
|
def gmask_token_id(self) -> int: |
|
return self.convert_tokens_to_ids("[gMASK]") |
|
|
|
@property |
|
def smask_token_id(self) -> int: |
|
return self.convert_tokens_to_ids("[sMASK]") |
|
|
|
@property |
|
def mask_token_ids(self): |
|
return [self.mask_token_id, self.smask_token_id, self.gmask_token_id] |
|
|
|
def _build_input_for_multiple_choice(self, context, choices): |
|
context_id = context["input_ids"] |
|
if torch.is_tensor(context_id): |
|
context_id = context_id.tolist() |
|
|
|
division = len(context_id) |
|
mask_position = context_id.index(self.mask_token_id) |
|
|
|
token = torch.tensor(context_id, dtype=torch.long) |
|
attention_mask = [context["attention_mask"].expand(division, -1)] |
|
position_id = torch.arange(division, dtype=torch.long) |
|
block_position_id = torch.zeros(division, dtype=torch.long) |
|
|
|
choice_ids, choice_indices = [], [] |
|
|
|
for choice_str in choices: |
|
choice = torch.tensor(self(choice_str, add_special_tokens=False, padding=False)['input_ids'], |
|
dtype=torch.long) |
|
choice_ids.append(choice) |
|
choice_indices.append(torch.arange(len(token), len(token) + len(choice), dtype=torch.long)) |
|
attention_mask.append(torch.tril(torch.ones((len(choice), len(choice)), dtype=torch.long))) |
|
|
|
token = torch.cat((token, torch.tensor([self.sop_token_id], dtype=torch.long), choice[:-1])) |
|
position_id = torch.cat((position_id, torch.tensor([mask_position] * len(choice), dtype=torch.long))) |
|
block_position_id = torch.cat((block_position_id, torch.arange(1, 1 + len(choice), dtype=torch.long))) |
|
|
|
attention_mask = torch.block_diag(*attention_mask) |
|
attention_mask[division:, :division] = context["attention_mask"].unsqueeze(0) |
|
|
|
return { |
|
"input_ids": token, |
|
"position_ids": torch.stack((position_id, block_position_id)), |
|
"attention_mask": attention_mask, |
|
"choice_ids": choice_ids, |
|
"choice_indices": choice_indices |
|
} |
|
|
|
def _pad_batch(self, tokens, position_ids, attention_mask, max_seq_length): |
|
pad_length = max_seq_length - len(tokens) |
|
attention_mask = torch.nn.functional.pad( |
|
attention_mask, |
|
(0, pad_length, 0, pad_length), |
|
mode="constant", |
|
value=0, |
|
) |
|
tokens = torch.cat((tokens, torch.zeros(pad_length, dtype=torch.long))) |
|
position_ids = torch.cat((position_ids, position_ids[..., -1:].expand(-1, pad_length)), dim=-1) |
|
return tokens, position_ids, attention_mask |
|
|
|
def _collate(self, samples): |
|
TILE = 1 |
|
length_to_pad = (max(map(lambda spl: len(spl["input_ids"]), samples)) + TILE - 1) // TILE * TILE |
|
|
|
token_batch, position_id_batch, attention_mask_batch = [], [], [] |
|
choices_batch, choice_target_ids_batch = [], [] |
|
|
|
for sample in samples: |
|
token, position_id, attention_mask = self._pad_batch( |
|
sample["input_ids"], sample["position_ids"], sample["attention_mask"], length_to_pad |
|
) |
|
token_batch.append(token) |
|
position_id_batch.append(position_id) |
|
attention_mask_batch.append(attention_mask) |
|
choices_batch.append(sample["choice_ids"]) |
|
choice_target_ids_batch.append(sample["choice_indices"]) |
|
return { |
|
"input_ids": torch.stack(token_batch), |
|
"position_ids": torch.stack(position_id_batch), |
|
"attention_mask": torch.stack(attention_mask_batch).unsqueeze(1), |
|
"choice_ids": choices_batch, |
|
"choice_indices": choice_target_ids_batch, |
|
} |
|
|
|
def build_inputs_for_multiple_choice(self, model_input: BatchEncoding, choices, max_length=None): |
|
samples = [{key: value[i] for key, value in model_input.items()} for i in range(len(model_input["input_ids"]))] |
|
samples = [self._build_input_for_multiple_choice(sample, choice) for sample, choice in |
|
zip(samples, choices)] |
|
inputs = self._collate(samples) |
|
return GLMBatchEncoding(inputs) |
|
|
|
def build_inputs_for_generation(self, model_input: BatchEncoding, max_gen_length=512, targets=None, padding=False): |
|
mask_ids = self.mask_token_ids |
|
input_ids = model_input.input_ids |
|
batch_size, seq_length = input_ids.shape[:2] |
|
position_id, block_position_id = list(range(seq_length)), [0 for _ in range(seq_length)] |
|
position_ids, block_position_ids = [], [] |
|
labels = None |
|
if targets is not None: |
|
is_batched = isinstance(targets, (list, tuple)) |
|
targets = self(targets, add_special_tokens=False, padding=False).input_ids |
|
if not is_batched: |
|
targets = [targets] |
|
assert len(targets) == len(input_ids) |
|
targets = [target[:(max_gen_length-1)] + [self.eop_token_id] for target in targets] |
|
if not padding: |
|
max_gen_length = max(map(len, targets)) |
|
targets = [[self.sop_token_id] + target for target in targets] |
|
labels = [target[1:] for target in targets] |
|
targets = [target + [self.pad_token_id] * (max_gen_length + 1 - len(target)) for target in targets] |
|
labels = [label + [self.pad_token_id] * (max_gen_length - len(label)) for label in labels] |
|
targets = torch.tensor(targets, dtype=input_ids.dtype, device=input_ids.device) |
|
labels = torch.tensor(labels, dtype=input_ids.dtype, device=input_ids.device) |
|
labels = torch.cat((input_ids.new_full((batch_size, seq_length), self.pad_token_id), labels), dim=1) |
|
for i in range(batch_size): |
|
mask_positions = [] |
|
for mask_id in mask_ids: |
|
mask_positions += (input_ids[i] == mask_id).nonzero(as_tuple=True)[0].tolist() |
|
if not mask_positions: |
|
raise ValueError("Cannot find mask token in the input") |
|
mask_positions.sort() |
|
mask_pos = mask_positions[0] |
|
position_ids.append(position_id + [mask_pos] * max_gen_length) |
|
block_position_ids.append(block_position_id + list(range(1, max_gen_length + 1))) |
|
position_ids = torch.tensor(position_ids, dtype=input_ids.dtype, device=input_ids.device) |
|
block_position_ids = torch.tensor(block_position_ids, dtype=input_ids.dtype, device=input_ids.device) |
|
position_ids = torch.stack((position_ids, block_position_ids), dim=1) |
|
attention_mask = model_input.attention_mask |
|
attention_mask = attention_mask.unsqueeze(1).expand(-1, seq_length + max_gen_length, -1) |
|
generation_attention_mask = torch.cat([attention_mask.new_zeros((seq_length, max_gen_length)), |
|
torch.tril(attention_mask.new_ones((max_gen_length, max_gen_length)))], |
|
dim=0).unsqueeze(0).expand(batch_size, -1, -1) |
|
attention_mask = torch.cat((attention_mask, generation_attention_mask), dim=2) |
|
attention_mask = attention_mask.unsqueeze(1) |
|
if targets is None: |
|
input_ids = torch.cat((input_ids, input_ids.new_full((batch_size, 1), self.sop_token_id)), dim=-1) |
|
else: |
|
input_ids = torch.cat((input_ids, targets[:, :-1]), dim=1) |
|
batch = {"input_ids": input_ids, "position_ids": position_ids} |
|
if labels is None: |
|
batch["generation_attention_mask"] = attention_mask |
|
else: |
|
batch["attention_mask"] = attention_mask |
|
batch["labels"] = labels |
|
return BatchEncoding(batch) |
|
|
|
|
|
class GLMRobertaTokenizer(RobertaTokenizer, GLMTokenizerMixin): |
|
model_input_names = ["input_ids", "position_ids", "attention_mask"] |
|
truncation_side: str = "left" |
|
|
|
@property |
|
def gmask_token_id(self) -> int: |
|
raise NotImplementedError("The model doesn't support gMASK") |
|
|
|
@property |
|
def smask_token_id(self) -> int: |
|
raise NotImplementedError("The model doesn't support sMASK") |
|
|
|
@property |
|
def mask_token_ids(self): |
|
return [self.mask_token_id] |
|
|
|
|
|
class GLMChineseTokenizer(PreTrainedTokenizer, GLMTokenizerMixin): |
|
vocab_files_names = {"vocab_file": "cog-pretrain.model"} |
|
truncation_side: str = "left" |
|
|
|
def __init__(self, vocab_file, **kwargs): |
|
super().__init__(**kwargs) |
|
self.vocab_file = vocab_file |
|
self.sp_model = spm.SentencePieceProcessor() |
|
self.sp_model.Load(vocab_file) |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.sp_model) |
|
|
|
def get_vocab(self): |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def _tokenize(self, text, **kwargs): |
|
return self.sp_model.encode(text, out_type=str) |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.sp_model.PieceToId(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.sp_model.IdToPiece(index) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
return self.sp_model.decode(tokens) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
|
|
return (out_vocab_file,) |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERT sequence has the following format: |
|
- single sequence: ``[CLS] X [SEP]`` |
|
- pair of sequences: ``[CLS] A [SEP] B [SEP]`` |
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. |
|
""" |
|
|
|
|
|
|
|
|
|
cls = [self.cls_token_id] |
|
eos = [self.eos_token_id] |
|
|
|
|
|
sep = [self.sep_token_id] |
|
|
|
if token_ids_1 is None: |
|
return cls + token_ids_0 + eos |
|
else: |
|
return cls + token_ids_0 + sep + token_ids_1 + eos |
|
|
|
|
|
class GLMGPT2Tokenizer(GPT2Tokenizer, GLMTokenizerMixin): |
|
model_input_names = ["input_ids", "position_ids", "attention_mask"] |
|
truncation_side: str = "left" |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERT sequence has the following format: |
|
- single sequence: ``[CLS] X [SEP]`` |
|
- pair of sequences: ``[CLS] A [SEP] B [SEP]`` |
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. |
|
""" |
|
assert token_ids_1 is None |
|
cls = [self.cls_token_id] |
|
eos = [self.eos_token_id] |
|
return cls + token_ids_0 + eos |
|
|
|
|
|
class GLMBertTokenizer(BertTokenizer, GLMTokenizerMixin): |
|
model_input_names = ["input_ids", "position_ids", "attention_mask"] |
|
truncation_side: str = "left" |
|
|
|
@property |
|
def gmask_token_id(self) -> int: |
|
raise NotImplementedError("The model doesn't support gMASK") |
|
|
|
@property |
|
def smask_token_id(self) -> int: |
|
raise NotImplementedError("The model doesn't support sMASK") |
|
|
|
@property |
|
def mask_token_ids(self): |
|
return [self.mask_token_id] |
|
|
|
|
|
class GLMTokenizer: |
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): |
|
tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) |
|
config_tokenizer_class = tokenizer_config.get("tokenizer_class") |
|
if config_tokenizer_class == "GLMRobertaTokenizer": |
|
tokenizer_class = GLMRobertaTokenizer |
|
elif config_tokenizer_class == "GLMChineseTokenizer": |
|
tokenizer_class = GLMChineseTokenizer |
|
elif config_tokenizer_class == "GLMGPT2Tokenizer": |
|
tokenizer_class = GLMGPT2Tokenizer |
|
elif config_tokenizer_class == "GLMBertTokenizer": |
|
tokenizer_class = GLMBertTokenizer |
|
else: |
|
raise NotImplementedError("Not implemented tokenizer type:", config_tokenizer_class) |
|
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) |