update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: openai/whisper-tiny
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- PolyAI/minds14
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: whisper-tiny-en-US
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: PolyAI/minds14
|
18 |
+
type: PolyAI/minds14
|
19 |
+
config: en-AU
|
20 |
+
split: train
|
21 |
+
args: en-AU
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.1655499720826354
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# whisper-tiny-en-US
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4245
|
36 |
+
- Wer Ortho: 0.1714
|
37 |
+
- Wer: 0.1655
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 1e-05
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 16
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: constant_with_warmup
|
62 |
+
- lr_scheduler_warmup_steps: 5
|
63 |
+
- training_steps: 400
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
|
69 |
+
| No log | 0.36 | 10 | 3.1022 | 0.3282 | 0.1960 |
|
70 |
+
| No log | 0.71 | 20 | 1.6867 | 0.2399 | 0.1865 |
|
71 |
+
| 2.9245 | 1.07 | 30 | 0.6685 | 0.2332 | 0.1982 |
|
72 |
+
| 2.9245 | 1.43 | 40 | 0.4912 | 0.2017 | 0.1848 |
|
73 |
+
| 0.6297 | 1.79 | 50 | 0.4243 | 0.1865 | 0.1753 |
|
74 |
+
| 0.6297 | 2.14 | 60 | 0.3895 | 0.1801 | 0.1689 |
|
75 |
+
| 0.6297 | 2.5 | 70 | 0.3678 | 0.1769 | 0.1669 |
|
76 |
+
| 0.3045 | 2.86 | 80 | 0.3570 | 0.1746 | 0.1689 |
|
77 |
+
| 0.3045 | 3.21 | 90 | 0.3496 | 0.1720 | 0.1647 |
|
78 |
+
| 0.1949 | 3.57 | 100 | 0.3451 | 0.1746 | 0.1661 |
|
79 |
+
| 0.1949 | 3.93 | 110 | 0.3407 | 0.1804 | 0.1700 |
|
80 |
+
| 0.1949 | 4.29 | 120 | 0.3439 | 0.1778 | 0.1695 |
|
81 |
+
| 0.1099 | 4.64 | 130 | 0.3501 | 0.1743 | 0.1689 |
|
82 |
+
| 0.1099 | 5.0 | 140 | 0.3488 | 0.1737 | 0.1667 |
|
83 |
+
| 0.0583 | 5.36 | 150 | 0.3554 | 0.1778 | 0.1697 |
|
84 |
+
| 0.0583 | 5.71 | 160 | 0.3595 | 0.1708 | 0.1628 |
|
85 |
+
| 0.0583 | 6.07 | 170 | 0.3514 | 0.1746 | 0.1661 |
|
86 |
+
| 0.032 | 6.43 | 180 | 0.3672 | 0.1755 | 0.1683 |
|
87 |
+
| 0.032 | 6.79 | 190 | 0.3676 | 0.1676 | 0.1602 |
|
88 |
+
| 0.0146 | 7.14 | 200 | 0.3791 | 0.1658 | 0.1600 |
|
89 |
+
| 0.0146 | 7.5 | 210 | 0.3825 | 0.1676 | 0.1625 |
|
90 |
+
| 0.0146 | 7.86 | 220 | 0.3799 | 0.1702 | 0.1650 |
|
91 |
+
| 0.0084 | 8.21 | 230 | 0.3827 | 0.1702 | 0.1655 |
|
92 |
+
| 0.0084 | 8.57 | 240 | 0.3869 | 0.1778 | 0.1714 |
|
93 |
+
| 0.0043 | 8.93 | 250 | 0.3951 | 0.1740 | 0.1686 |
|
94 |
+
| 0.0043 | 9.29 | 260 | 0.3958 | 0.1720 | 0.1672 |
|
95 |
+
| 0.0043 | 9.64 | 270 | 0.3968 | 0.1758 | 0.1706 |
|
96 |
+
| 0.003 | 10.0 | 280 | 0.3978 | 0.1725 | 0.1672 |
|
97 |
+
| 0.003 | 10.36 | 290 | 0.4012 | 0.1734 | 0.1681 |
|
98 |
+
| 0.0023 | 10.71 | 300 | 0.4068 | 0.1728 | 0.1678 |
|
99 |
+
| 0.0023 | 11.07 | 310 | 0.4097 | 0.1752 | 0.1697 |
|
100 |
+
| 0.0023 | 11.43 | 320 | 0.4113 | 0.1746 | 0.1692 |
|
101 |
+
| 0.0018 | 11.79 | 330 | 0.4120 | 0.1737 | 0.1681 |
|
102 |
+
| 0.0018 | 12.14 | 340 | 0.4141 | 0.1740 | 0.1683 |
|
103 |
+
| 0.0016 | 12.5 | 350 | 0.4172 | 0.1731 | 0.1678 |
|
104 |
+
| 0.0016 | 12.86 | 360 | 0.4193 | 0.1740 | 0.1681 |
|
105 |
+
| 0.0016 | 13.21 | 370 | 0.4197 | 0.1731 | 0.1672 |
|
106 |
+
| 0.0014 | 13.57 | 380 | 0.4215 | 0.1731 | 0.1672 |
|
107 |
+
| 0.0014 | 13.93 | 390 | 0.4228 | 0.1720 | 0.1664 |
|
108 |
+
| 0.0012 | 14.29 | 400 | 0.4245 | 0.1714 | 0.1655 |
|
109 |
+
|
110 |
+
|
111 |
+
### Framework versions
|
112 |
+
|
113 |
+
- Transformers 4.31.0.dev0
|
114 |
+
- Pytorch 2.0.1+cu118
|
115 |
+
- Datasets 2.13.1
|
116 |
+
- Tokenizers 0.13.3
|