--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9458456973293768 - name: Recall type: recall value: 0.9543413173652695 - name: F1 type: f1 value: 0.9500745156482863 - name: Accuracy type: accuracy value: 0.9605263157894737 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2092 - Precision: 0.9458 - Recall: 0.9543 - F1: 0.9501 - Accuracy: 0.9605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 0.9809 | 0.7284 | 0.7829 | 0.7547 | 0.7890 | | 1.3679 | 3.12 | 500 | 0.5431 | 0.8426 | 0.8653 | 0.8538 | 0.8727 | | 1.3679 | 4.69 | 750 | 0.3871 | 0.8939 | 0.9147 | 0.9042 | 0.9198 | | 0.3879 | 6.25 | 1000 | 0.3038 | 0.9175 | 0.9326 | 0.9250 | 0.9389 | | 0.3879 | 7.81 | 1250 | 0.2561 | 0.9255 | 0.9386 | 0.9320 | 0.9448 | | 0.2076 | 9.38 | 1500 | 0.2329 | 0.9342 | 0.9454 | 0.9397 | 0.9533 | | 0.2076 | 10.94 | 1750 | 0.2166 | 0.9458 | 0.9536 | 0.9497 | 0.9605 | | 0.1404 | 12.5 | 2000 | 0.2144 | 0.9488 | 0.9566 | 0.9527 | 0.9622 | | 0.1404 | 14.06 | 2250 | 0.2147 | 0.9495 | 0.9573 | 0.9534 | 0.9626 | | 0.109 | 15.62 | 2500 | 0.2092 | 0.9458 | 0.9543 | 0.9501 | 0.9605 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1