--- license: mit tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: false --- # Improved Autoencoders ## Utilizing These weights are intended to be used with the [🧨 diffusers library](https://github.com/huggingface/diffusers). If you are looking for the model to use with the original [CompVis Stable Diffusion codebase](https://github.com/CompVis/stable-diffusion), [come here](https://huggingface.co/CompVis/stabilityai/sd-vae-ft-ema-original). #### How to use with 🧨 diffusers You can integrate this fine-tuned VAE decoder to your existing `diffusers` workflows, by including a `vae` argument to the `StableDiffusionPipeline` ```py from diffusers.models import AutoencoderKL from diffusers import StableDiffusionPipeline model = "CompVis/stable-diffusion-v1-4" vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse") pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae) ``` ## Decoder Finetuning We publish two kl-f8 autoencoder versions, finetuned from the original [kl-f8 autoencoder](https://github.com/CompVis/latent-diffusion#pretrained-autoencoding-models). The first, _ft-EMA_, was resumed from the original checkpoint, trained for 313198 steps and uses EMA weights. The second, _ft-MSE_, was resumed from _ft-EMA_ and uses EMA weights and was trained for another 280k steps using a re-weighted loss, with more emphasis on MSE reconstruction (producing somewhat ``smoother'' outputs). To keep compatibility with existing models, only the decoder part was finetuned; the checkpoints can be used as a drop-in replacement for the existing autoencoder. _Original kl-f8 VAE vs f8-ft-EMA vs f8-ft-MSE_ ## Evaluation ### COCO 2017 (256x256, val, 5000 images) | Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments |----------|---------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | | | | | | | | | | original | 246803 | 4.99 | 23.4 +/- 3.8 | 0.69 +/- 0.14 | 1.01 +/- 0.28 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD | | ft-EMA | 560001 | 4.42 | 23.8 +/- 3.9 | 0.69 +/- 0.13 | 0.96 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA | | ft-MSE | 840001 | 4.70 | 24.5 +/- 3.7 | 0.71 +/- 0.13 | 0.92 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs | ### LAION-Aesthetics 5+ (256x256, subset, 10000 images) | Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments |----------|-----------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | | | | | | | | | | original | 246803 | 2.61 | 26.0 +/- 4.4 | 0.81 +/- 0.12 | 0.75 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD | | ft-EMA | 560001 | 1.77 | 26.7 +/- 4.8 | 0.82 +/- 0.12 | 0.67 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA | | ft-MSE | 840001 | 1.88 | 27.3 +/- 4.7 | 0.83 +/- 0.11 | 0.65 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs | ### Visual _Visualization of reconstructions on 256x256 images from the COCO2017 validation dataset._
256x256: ft-EMA (left), ft-MSE (middle), original (right)