---
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2871
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Stages of photosynthesis
sentences:
- The function helps preprocess your entire dataset at once.
- You can create an index for your dataset by using [Dataset.add_faiss_index()](/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index)
or [Dataset.add_elasticsearch_index()](/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.add_elasticsearch_index)
depending on the system you want to use.
- What is photosynthesis?
- source_sentence: Steps to erase internet history
sentences:
- How do I delete my browsing history?
- Yes, there is a reference section available in 🤗 Datasets documentation. It covers
main classes, builder classes, loading methods, table classes, logging methods,
and task templates.
- What is the tallest building in New York City?
- source_sentence: The `StreamingDownloadManager` class is a download manager that
employs the "::" separator to traverse (possibly remote) compressed files.
sentences:
- What is the role of a business plan in entrepreneurship?
- The Hugging Face datasets library's default handler can be disabled to prevent
double logging by calling the `datasets.utils.logging.enable_propagation()` function.
- The `StreamingDownloadManager` class is a download manager that uses the ”::”
separator to navigate through (possibly remote) compressed archives.
- source_sentence: Using torch.utils.data.DataLoader, you can package the dataset
and craft a collate function to group the samples into batches.
sentences:
- Why does understanding death philosophical?
- The `_generate_examples` method is used to access and yield TAR files sequentially,
and to associate the metadata in `metadata_path` with the audio files in the TAR
file.
- You can wrap the dataset in DataLoader using torch.utils.data.DataLoader and create
a collate function to collate the samples into batches.
- source_sentence: Top literature about World War II
sentences:
- What is the price of an iPhone 12?
- Best books on World War II
- When was the Declaration of Independence signed?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.784720778465271
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.926605504587156
name: Cosine F1
- type: cosine_f1_threshold
value: 0.784720778465271
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8938053097345132
name: Cosine Precision
- type: cosine_recall
value: 0.9619047619047619
name: Cosine Recall
- type: cosine_ap
value: 0.9548853455786228
name: Cosine Ap
- type: dot_accuracy
value: 0.9
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.784720778465271
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.926605504587156
name: Dot F1
- type: dot_f1_threshold
value: 0.784720778465271
name: Dot F1 Threshold
- type: dot_precision
value: 0.8938053097345132
name: Dot Precision
- type: dot_recall
value: 0.9619047619047619
name: Dot Recall
- type: dot_ap
value: 0.9548853455786228
name: Dot Ap
- type: manhattan_accuracy
value: 0.896875
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.908977508544922
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9241379310344828
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.13671588897705
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8933333333333333
name: Manhattan Precision
- type: manhattan_recall
value: 0.9571428571428572
name: Manhattan Recall
- type: manhattan_ap
value: 0.9549673053310541
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6561694145202637
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.926605504587156
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6561694145202637
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8938053097345132
name: Euclidean Precision
- type: euclidean_recall
value: 0.9619047619047619
name: Euclidean Recall
- type: euclidean_ap
value: 0.9548853455786228
name: Euclidean Ap
- type: max_accuracy
value: 0.9
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.908977508544922
name: Max Accuracy Threshold
- type: max_f1
value: 0.926605504587156
name: Max F1
- type: max_f1_threshold
value: 10.13671588897705
name: Max F1 Threshold
- type: max_precision
value: 0.8938053097345132
name: Max Precision
- type: max_recall
value: 0.9619047619047619
name: Max Recall
- type: max_ap
value: 0.9549673053310541
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.90625
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8142284154891968
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.929245283018868
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8142284154891968
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9205607476635514
name: Cosine Precision
- type: cosine_recall
value: 0.9380952380952381
name: Cosine Recall
- type: cosine_ap
value: 0.9556341092519267
name: Cosine Ap
- type: dot_accuracy
value: 0.90625
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8142284750938416
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.929245283018868
name: Dot F1
- type: dot_f1_threshold
value: 0.8142284750938416
name: Dot F1 Threshold
- type: dot_precision
value: 0.9205607476635514
name: Dot Precision
- type: dot_recall
value: 0.9380952380952381
name: Dot Recall
- type: dot_ap
value: 0.9556341092519267
name: Dot Ap
- type: manhattan_accuracy
value: 0.903125
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.576812744140625
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9270588235294117
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.576812744140625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9162790697674419
name: Manhattan Precision
- type: manhattan_recall
value: 0.9380952380952381
name: Manhattan Recall
- type: manhattan_ap
value: 0.9557652464010216
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.90625
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.609528124332428
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.929245283018868
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.609528124332428
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9205607476635514
name: Euclidean Precision
- type: euclidean_recall
value: 0.9380952380952381
name: Euclidean Recall
- type: euclidean_ap
value: 0.9556341092519267
name: Euclidean Ap
- type: max_accuracy
value: 0.90625
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.576812744140625
name: Max Accuracy Threshold
- type: max_f1
value: 0.929245283018868
name: Max F1
- type: max_f1_threshold
value: 9.576812744140625
name: Max F1 Threshold
- type: max_precision
value: 0.9205607476635514
name: Max Precision
- type: max_recall
value: 0.9380952380952381
name: Max Recall
- type: max_ap
value: 0.9557652464010216
name: Max Ap
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_7")
# Run inference
sentences = [
'Top literature about World War II',
'Best books on World War II',
'What is the price of an iPhone 12?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:----------|
| cosine_accuracy | 0.9 |
| cosine_accuracy_threshold | 0.7847 |
| cosine_f1 | 0.9266 |
| cosine_f1_threshold | 0.7847 |
| cosine_precision | 0.8938 |
| cosine_recall | 0.9619 |
| cosine_ap | 0.9549 |
| dot_accuracy | 0.9 |
| dot_accuracy_threshold | 0.7847 |
| dot_f1 | 0.9266 |
| dot_f1_threshold | 0.7847 |
| dot_precision | 0.8938 |
| dot_recall | 0.9619 |
| dot_ap | 0.9549 |
| manhattan_accuracy | 0.8969 |
| manhattan_accuracy_threshold | 9.909 |
| manhattan_f1 | 0.9241 |
| manhattan_f1_threshold | 10.1367 |
| manhattan_precision | 0.8933 |
| manhattan_recall | 0.9571 |
| manhattan_ap | 0.955 |
| euclidean_accuracy | 0.9 |
| euclidean_accuracy_threshold | 0.6562 |
| euclidean_f1 | 0.9266 |
| euclidean_f1_threshold | 0.6562 |
| euclidean_precision | 0.8938 |
| euclidean_recall | 0.9619 |
| euclidean_ap | 0.9549 |
| max_accuracy | 0.9 |
| max_accuracy_threshold | 9.909 |
| max_f1 | 0.9266 |
| max_f1_threshold | 10.1367 |
| max_precision | 0.8938 |
| max_recall | 0.9619 |
| **max_ap** | **0.955** |
#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.9062 |
| cosine_accuracy_threshold | 0.8142 |
| cosine_f1 | 0.9292 |
| cosine_f1_threshold | 0.8142 |
| cosine_precision | 0.9206 |
| cosine_recall | 0.9381 |
| cosine_ap | 0.9556 |
| dot_accuracy | 0.9062 |
| dot_accuracy_threshold | 0.8142 |
| dot_f1 | 0.9292 |
| dot_f1_threshold | 0.8142 |
| dot_precision | 0.9206 |
| dot_recall | 0.9381 |
| dot_ap | 0.9556 |
| manhattan_accuracy | 0.9031 |
| manhattan_accuracy_threshold | 9.5768 |
| manhattan_f1 | 0.9271 |
| manhattan_f1_threshold | 9.5768 |
| manhattan_precision | 0.9163 |
| manhattan_recall | 0.9381 |
| manhattan_ap | 0.9558 |
| euclidean_accuracy | 0.9062 |
| euclidean_accuracy_threshold | 0.6095 |
| euclidean_f1 | 0.9292 |
| euclidean_f1_threshold | 0.6095 |
| euclidean_precision | 0.9206 |
| euclidean_recall | 0.9381 |
| euclidean_ap | 0.9556 |
| max_accuracy | 0.9062 |
| max_accuracy_threshold | 9.5768 |
| max_f1 | 0.9292 |
| max_f1_threshold | 9.5768 |
| max_precision | 0.9206 |
| max_recall | 0.9381 |
| **max_ap** | **0.9558** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,871 training samples
* Columns: sentence2
, sentence1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence2 | sentence1 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
How do I do to get fuller face?
| How can one get a fuller face?
| 1
|
| The DatasetInfo holds the data of a dataset, which may include its description, characteristics, and size.
| A dataset's information is stored inside DatasetInfo and can include information such as the dataset description, features, and dataset size.
| 1
|
| How do I write a resume?
| How do I create a resume?
| 1
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 320 evaluation samples
* Columns: sentence2
, sentence1
, and label
* Approximate statistics based on the first 320 samples:
| | sentence2 | sentence1 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | Steps to erase internet history
| How do I delete my browsing history?
| 1
|
| How important is it to be the first person to wish someone a happy birthday?
| What is the right etiquette for wishing a Jehovah Witness happy birthday?
| 0
|
| Who directed 'Gone with the Wind'?
| Who directed 'Citizen Kane'?
| 0
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters