---
base_model: srikarvar/fine_tuned_model_5
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:560
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The next move is to acquire the dataset and delineate the divisions.
sentences:
- The next step is to download the dataset and define the splits.
- The `batch_id` parameter is used to specify a batch specific to the recipe code.
It is used to update the storage directory when the recipe instructions are modified.
- The Instructions guide is divided into sections such as Overview, Tutorials, How-to
guides, Settings, Interface, Hardware, System repository, Conceptual guides, and
Reference.
- source_sentence: The PaperInfo holds the data of a research paper, which may include
its title, abstract, and reference list.
sentences:
- Parquet is a language-agnostic file format that enables efficient storage and
querying of data tables.
- The purpose of the food processor in the kitchen is to chop and blend ingredients
quickly and efficiently.
- A research paper's information is stored inside PaperInfo and can include information
such as the paper's title, abstract, and references.
- source_sentence: This manual is devoted to constructing a personal finance tracker.
sentences:
- The `map()` function in the financial package supports processing large amounts
of transactions, speeding up data analysis.
- The manual is about building a personal finance tracker.
- No, ITEMCODE is not available in version 3.5.0 of the documentation.
- source_sentence: The reader may find it more advantageous to not specify a section
when browsing a collection, as a default section that displays all genres may
be the most suitable choice if no particular genre is requested.
sentences:
- The PlantCare manual provides guidance on how to plant, water, prune, and fertilize
different species of plants.
- It may be more convenient for the reader to not specify a section when browsing
a collection because a suitable default may be an aggregated section that displays
all genres if the reader doesn’t request a particular one.
- If you want to switch from a ProductList to an InventoryList, you can simply create
a new InventoryList object from your existing data using the appropriate method
for your data source.
- source_sentence: This framework has a strong connection with cloud platforms, making
it simple to deploy and share models with the developer community.
sentences:
- Yes, the framework is deeply integrated with cloud-based platforms, allowing for
easy deployment and sharing with the developer community.
- UserRole data is properly converted to arrays.
- You can find information about creating a research paper card in the /docs/papers/v2.10.0/paper_card
document.
model-index:
- name: SentenceTransformer based on srikarvar/fine_tuned_model_5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: e5 cogcache small refined
type: e5-cogcache-small-refined
metrics:
- type: cosine_accuracy@1
value: 1.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 1.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 1.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 1.0
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 1.0
name: Cosine Mrr@10
- type: cosine_map@100
value: 1.0
name: Cosine Map@100
- type: dot_accuracy@1
value: 1.0
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 1.0
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1.0
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 1.0
name: Dot Precision@1
- type: dot_precision@3
value: 0.3333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 1.0
name: Dot Recall@1
- type: dot_recall@3
value: 1.0
name: Dot Recall@3
- type: dot_recall@5
value: 1.0
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 1.0
name: Dot Ndcg@10
- type: dot_mrr@10
value: 1.0
name: Dot Mrr@10
- type: dot_map@100
value: 1.0
name: Dot Map@100
- type: cosine_accuracy@1
value: 1.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 1.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 1.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 1.0
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 1.0
name: Cosine Mrr@10
- type: cosine_map@100
value: 1.0
name: Cosine Map@100
- type: dot_accuracy@1
value: 1.0
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 1.0
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1.0
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 1.0
name: Dot Precision@1
- type: dot_precision@3
value: 0.3333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 1.0
name: Dot Recall@1
- type: dot_recall@3
value: 1.0
name: Dot Recall@3
- type: dot_recall@5
value: 1.0
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 1.0
name: Dot Ndcg@10
- type: dot_mrr@10
value: 1.0
name: Dot Mrr@10
- type: dot_map@100
value: 1.0
name: Dot Map@100
---
# SentenceTransformer based on srikarvar/fine_tuned_model_5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_13")
# Run inference
sentences = [
'This framework has a strong connection with cloud platforms, making it simple to deploy and share models with the developer community.',
'Yes, the framework is deeply integrated with cloud-based platforms, allowing for easy deployment and sharing with the developer community.',
'UserRole data is properly converted to arrays.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `e5-cogcache-small-refined`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:--------|
| cosine_accuracy@1 | 1.0 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 1.0 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 1.0 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 1.0 |
| cosine_mrr@10 | 1.0 |
| **cosine_map@100** | **1.0** |
| dot_accuracy@1 | 1.0 |
| dot_accuracy@3 | 1.0 |
| dot_accuracy@5 | 1.0 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 1.0 |
| dot_precision@3 | 0.3333 |
| dot_precision@5 | 0.2 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 1.0 |
| dot_recall@3 | 1.0 |
| dot_recall@5 | 1.0 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 1.0 |
| dot_mrr@10 | 1.0 |
| dot_map@100 | 1.0 |
#### Information Retrieval
* Dataset: `e5-cogcache-small-refined`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:--------|
| cosine_accuracy@1 | 1.0 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 1.0 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 1.0 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 1.0 |
| cosine_mrr@10 | 1.0 |
| **cosine_map@100** | **1.0** |
| dot_accuracy@1 | 1.0 |
| dot_accuracy@3 | 1.0 |
| dot_accuracy@5 | 1.0 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 1.0 |
| dot_precision@3 | 0.3333 |
| dot_precision@5 | 0.2 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 1.0 |
| dot_recall@3 | 1.0 |
| dot_recall@5 | 1.0 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 1.0 |
| dot_mrr@10 | 1.0 |
| dot_map@100 | 1.0 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 560 training samples
* Columns: anchor
and positive
* Approximate statistics based on the first 560 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
It is not available in v2.10.0.
| No, it doesn't exist in v2.10.0.
|
| You can become a member of the research forum and pose questions to the AI community.
| You can join and ask questions in the AI research forum.
|
| No information regarding initializing a project for PyTorch is included in the guide.
| The guide does not provide information on how to initialize a project for PyTorch.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters