--- license: llama3.2 language: - en base_model: - meta-llama/Llama-3.2-1B-Instruct pipeline_tag: text-generation library_name: transformers --- # Llama-3.2-1B-Instruct-ov-INT8 * Model creator: [Meta Llama](https://huggingface.co/meta-llama) * Original model: [Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) ## Description This is [Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **int8_asym** * ratio: **1** * group_size: **128** For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html). ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2024.4.0 and higher * Optimum Intel 1.19.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "srang992/Llama-3.2-1B-Instruct-ov-INT8" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("What is OpenVINO?", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html). ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install openvino-genai huggingface_hub ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "srang992/Llama-3.2-1B-Instruct-ov-INT8" model_path = "Llama-3.2-1B-Instruct-ov-INT8" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 3. Run model inference: ``` import openvino_genai as ov_genai device = "CPU" pipe = ov_genai.LLMPipeline(model_path, device) print(pipe.generate("What is OpenVINO?", max_length=200)) ```