poonehmousavi
commited on
Commit
•
e8520ec
1
Parent(s):
269ef58
Upload README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
language:
|
3 |
-
-
|
4 |
thumbnail: null
|
5 |
pipeline_tag: automatic-speech-recognition
|
6 |
tags:
|
@@ -8,39 +8,38 @@ tags:
|
|
8 |
- pytorch
|
9 |
- speechbrain
|
10 |
- Transformer
|
11 |
-
- hf-asr-leaderboard
|
12 |
license: apache-2.0
|
13 |
datasets:
|
14 |
-
- commonvoice
|
15 |
metrics:
|
16 |
- wer
|
17 |
- cer
|
18 |
model-index:
|
19 |
-
- name: asr-wav2vec2-commonvoice-
|
20 |
results:
|
21 |
- task:
|
22 |
name: Automatic Speech Recognition
|
23 |
type: automatic-speech-recognition
|
24 |
dataset:
|
25 |
-
name: CommonVoice
|
26 |
-
type: mozilla-foundation/
|
27 |
-
config:
|
28 |
split: test
|
29 |
args:
|
30 |
-
language:
|
31 |
metrics:
|
32 |
- name: Test WER
|
33 |
type: wer
|
34 |
-
value: '
|
35 |
---
|
36 |
|
37 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
38 |
<br/><br/>
|
39 |
|
40 |
-
# wav2vec 2.0 with CTC
|
41 |
|
42 |
This repository provides all the necessary tools to perform automatic speech
|
43 |
-
recognition from an end-to-end system pretrained on CommonVoice (
|
44 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
45 |
[SpeechBrain](https://speechbrain.github.io).
|
46 |
|
@@ -48,15 +47,15 @@ The performance of the model is the following:
|
|
48 |
|
49 |
| Release | Test CER | Test WER | GPUs |
|
50 |
|:-------------:|:--------------:|:--------------:| :--------:|
|
51 |
-
|
|
52 |
|
53 |
## Pipeline description
|
54 |
|
55 |
This ASR system is composed of 2 different but linked blocks:
|
56 |
-
- Tokenizer (unigram) that transforms words into
|
57 |
-
the train transcriptions (train.tsv) of CommonVoice (
|
58 |
-
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([
|
59 |
-
The obtained final acoustic representation is given to the CTC
|
60 |
|
61 |
The system is trained with recordings sampled at 16kHz (single channel).
|
62 |
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
|
@@ -72,18 +71,21 @@ pip install speechbrain transformers
|
|
72 |
Please notice that we encourage you to read our tutorials and learn more about
|
73 |
[SpeechBrain](https://speechbrain.github.io).
|
74 |
|
75 |
-
### Transcribing your own audio files (in
|
76 |
|
77 |
```python
|
78 |
from speechbrain.pretrained import EncoderASR
|
79 |
|
80 |
-
asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-
|
81 |
-
asr_model.transcribe_file(
|
82 |
|
83 |
```
|
84 |
### Inference on GPU
|
85 |
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
86 |
|
|
|
|
|
|
|
87 |
### Training
|
88 |
The model was trained with SpeechBrain.
|
89 |
To train it from scratch follow these steps:
|
@@ -101,30 +103,32 @@ pip install -e .
|
|
101 |
3. Run Training:
|
102 |
```bash
|
103 |
cd recipes/CommonVoice/ASR/CTC/
|
104 |
-
python train_with_wav2vec.py hparams/
|
105 |
```
|
106 |
|
107 |
-
You can find our training results (models, logs, etc) [here](https://
|
108 |
|
109 |
### Limitations
|
110 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
111 |
|
112 |
-
#### Referencing SpeechBrain
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
year = {2021},
|
119 |
-
publisher = {GitHub},
|
120 |
-
journal = {GitHub repository},
|
121 |
-
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
|
122 |
-
}
|
123 |
-
```
|
124 |
|
125 |
-
#### About SpeechBrain
|
126 |
-
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
|
127 |
|
128 |
-
|
|
|
129 |
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
language:
|
3 |
+
- en
|
4 |
thumbnail: null
|
5 |
pipeline_tag: automatic-speech-recognition
|
6 |
tags:
|
|
|
8 |
- pytorch
|
9 |
- speechbrain
|
10 |
- Transformer
|
|
|
11 |
license: apache-2.0
|
12 |
datasets:
|
13 |
+
- commonvoice.14.0
|
14 |
metrics:
|
15 |
- wer
|
16 |
- cer
|
17 |
model-index:
|
18 |
+
- name: asr-wav2vec2-commonvoice-14-en
|
19 |
results:
|
20 |
- task:
|
21 |
name: Automatic Speech Recognition
|
22 |
type: automatic-speech-recognition
|
23 |
dataset:
|
24 |
+
name: CommonVoice Corpus 14.0 (English)
|
25 |
+
type: mozilla-foundation/common_voice_14.0
|
26 |
+
config: en
|
27 |
split: test
|
28 |
args:
|
29 |
+
language: en
|
30 |
metrics:
|
31 |
- name: Test WER
|
32 |
type: wer
|
33 |
+
value: '16.68'
|
34 |
---
|
35 |
|
36 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
37 |
<br/><br/>
|
38 |
|
39 |
+
# wav2vec 2.0 with CTC trained on CommonVoice English (No LM)
|
40 |
|
41 |
This repository provides all the necessary tools to perform automatic speech
|
42 |
+
recognition from an end-to-end system pretrained on CommonVoice (English Language) within
|
43 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
44 |
[SpeechBrain](https://speechbrain.github.io).
|
45 |
|
|
|
47 |
|
48 |
| Release | Test CER | Test WER | GPUs |
|
49 |
|:-------------:|:--------------:|:--------------:| :--------:|
|
50 |
+
| 15-08-23 | 7.92 | 16.86 | 1xV100 32GB |
|
51 |
|
52 |
## Pipeline description
|
53 |
|
54 |
This ASR system is composed of 2 different but linked blocks:
|
55 |
+
- Tokenizer (unigram) that transforms words into unigrams and trained with
|
56 |
+
the train transcriptions (train.tsv) of CommonVoice (en).
|
57 |
+
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60)) is combined with two DNN layers and finetuned on CommonVoice DE.
|
58 |
+
The obtained final acoustic representation is given to the CTC decoder.
|
59 |
|
60 |
The system is trained with recordings sampled at 16kHz (single channel).
|
61 |
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
|
|
|
71 |
Please notice that we encourage you to read our tutorials and learn more about
|
72 |
[SpeechBrain](https://speechbrain.github.io).
|
73 |
|
74 |
+
### Transcribing your own audio files (in English)
|
75 |
|
76 |
```python
|
77 |
from speechbrain.pretrained import EncoderASR
|
78 |
|
79 |
+
asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-14-en", savedir="pretrained_models/asr-wav2vec2-commonvoice-14-en")
|
80 |
+
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-14-en/example-en.wav")
|
81 |
|
82 |
```
|
83 |
### Inference on GPU
|
84 |
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
85 |
|
86 |
+
## Parallel Inference on a Batch
|
87 |
+
Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.
|
88 |
+
|
89 |
### Training
|
90 |
The model was trained with SpeechBrain.
|
91 |
To train it from scratch follow these steps:
|
|
|
103 |
3. Run Training:
|
104 |
```bash
|
105 |
cd recipes/CommonVoice/ASR/CTC/
|
106 |
+
python train_with_wav2vec.py hparams/train_en_with_wav2vec.yaml --data_folder=your_data_folder
|
107 |
```
|
108 |
|
109 |
+
You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/ch10cnbhf1faz3w/AACdHFG65LC6582H0Tet_glTa?dl=0).
|
110 |
|
111 |
### Limitations
|
112 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
113 |
|
|
|
114 |
|
115 |
+
# **About SpeechBrain**
|
116 |
+
- Website: https://speechbrain.github.io/
|
117 |
+
- Code: https://github.com/speechbrain/speechbrain/
|
118 |
+
- HuggingFace: https://huggingface.co/speechbrain/
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
|
|
|
|
120 |
|
121 |
+
# **Citing SpeechBrain**
|
122 |
+
Please, cite SpeechBrain if you use it for your research or business.
|
123 |
|
124 |
+
```bibtex
|
125 |
+
@misc{speechbrain,
|
126 |
+
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
|
127 |
+
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
|
128 |
+
year={2021},
|
129 |
+
eprint={2106.04624},
|
130 |
+
archivePrefix={arXiv},
|
131 |
+
primaryClass={eess.AS},
|
132 |
+
note={arXiv:2106.04624}
|
133 |
+
}
|
134 |
+
```
|