asr-wav2vec2-commonvoice-fr / hyperparams.yaml
Titouan
update LeBenchmark
330fe4c
raw
history blame
3.21 kB
# ################################
# Model: wav2vec2 + DNN + CTC/Attention
# Augmentation: SpecAugment
# Authors: Titouan Parcollet 2021
# ################################
sample_rate: 16000
wav2vec2_hub: LeBenchmark/wav2vec2-FR-M-large
# BPE parameters
token_type: unigram # ["unigram", "bpe", "char"]
character_coverage: 1.0
# Model parameters
activation: !name:torch.nn.LeakyReLU
dnn_layers: 2
dnn_neurons: 1024
emb_size: 128
dec_neurons: 1024
# Outputs
output_neurons: 500 # BPE size, index(blank/eos/bos) = 0
# Decoding parameters
# Be sure that the bos and eos index match with the BPEs ones
blank_index: 0
bos_index: 1
eos_index: 2
min_decode_ratio: 0.0
max_decode_ratio: 1.0
beam_size: 80
eos_threshold: 1.5
using_max_attn_shift: True
max_attn_shift: 140
ctc_weight_decode: 0.0
temperature: 1.50
enc: !new:speechbrain.lobes.models.VanillaNN.VanillaNN
input_shape: [null, null, 1024]
activation: !ref <activation>
dnn_blocks: !ref <dnn_layers>
dnn_neurons: !ref <dnn_neurons>
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
source: !ref <wav2vec2_hub>
output_norm: True
freeze: True
pretrain: False
save_path: model_checkpoints
emb: !new:speechbrain.nnet.embedding.Embedding
num_embeddings: !ref <output_neurons>
embedding_dim: !ref <emb_size>
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
enc_dim: !ref <dnn_neurons>
input_size: !ref <emb_size>
rnn_type: gru
attn_type: location
hidden_size: 1024
attn_dim: 1024
num_layers: 1
scaling: 1.0
channels: 10
kernel_size: 100
re_init: True
dropout: 0.15
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dnn_neurons>
n_neurons: !ref <output_neurons>
seq_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dec_neurons>
n_neurons: !ref <output_neurons>
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
blank_index: !ref <blank_index>
seq_cost: !name:speechbrain.nnet.losses.nll_loss
label_smoothing: 0.1
asr_model: !new:torch.nn.ModuleList
- [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>]
tokenizer: !new:sentencepiece.SentencePieceProcessor
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
wav2vec2: !ref <wav2vec2>
enc: !ref <enc>
decoder: !new:speechbrain.decoders.S2SRNNBeamSearcher
embedding: !ref <emb>
decoder: !ref <dec>
linear: !ref <seq_lin>
ctc_linear: !ref <ctc_lin>
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
blank_index: !ref <blank_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <beam_size>
eos_threshold: !ref <eos_threshold>
using_max_attn_shift: !ref <using_max_attn_shift>
max_attn_shift: !ref <max_attn_shift>
temperature: !ref <temperature>
modules:
encoder: !ref <encoder>
decoder: !ref <decoder>
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
wav2vec2: !ref <wav2vec2>
asr: !ref <asr_model>
tokenizer: !ref <tokenizer>