cemsubakan commited on
Commit
311b142
1 Parent(s): 9e4f7a6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -21
README.md CHANGED
@@ -17,15 +17,12 @@ metrics:
17
  ---
18
 
19
 
20
- # SepFormer trained on WSJ0-2Mix
21
 
22
- This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2)
23
- model, implemented with SpeechBrain, and pretrained on WSJ0-2Mix dataset. For a better experience we encourage you to learn more about
24
- [SpeechBrain](https://speechbrain.github.io). The model performance is 22.4 dB on the test set of WSJ0-2Mix dataset.
25
 
26
- | Release | Test-Set SI-SNRi | Test-Set SDRi |
27
- |:-------------:|:--------------:|:--------------:|
28
- | 09-03-21 | 22.4dB | 22.6dB |
29
 
30
 
31
  ## Install SpeechBrain
@@ -39,20 +36,6 @@ pip install speechbrain
39
  Please notice that we encourage you to read our tutorials and learn more about
40
  [SpeechBrain](https://speechbrain.github.io).
41
 
42
- ### Perform source separation on your own audio file
43
- ```python
44
- from speechbrain.pretrained import SepformerSeparation as separator
45
- import torchaudio
46
-
47
- model = separator.from_hparams(source="speechbrain/sepformer-wsj02mix", savedir='pretrained_models/sepformer-wsj02mix')
48
-
49
- # for custom file, change path
50
- est_sources = model.separate_file(path='speechbrain/sepformer-wsj02mix/test_mixture.wav')
51
-
52
- torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
53
- torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
54
-
55
- ```
56
 
57
  ### Inference on GPU
58
  To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
 
17
  ---
18
 
19
 
20
+ # SI-SNR Estimator
21
 
22
+ This repository provides all the necessary tools to perform blind SI-SNR estimation from mixture signal + estimated sources.
23
+ The SI-SNR estimator is trained with a recordings from the WHAMR! and LibriMix datasets. We used a mixture of 9 separators to create the training data on the fly.
 
24
 
25
+ This model is released together with the REAL-M dataset for source separation on in-the-wild speech mixtures.
 
 
26
 
27
 
28
  ## Install SpeechBrain
 
36
  Please notice that we encourage you to read our tutorials and learn more about
37
  [SpeechBrain](https://speechbrain.github.io).
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  ### Inference on GPU
41
  To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.