Spaces:
Build error
Build error
File size: 11,949 Bytes
414b431 f92bf0d 414b431 f92bf0d 414b431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import gradio as gr
import torch
import torchvision.transforms.functional as torchvision_F
import numpy as np
import os
import shutil
import importlib
import trimesh
import tempfile
import subprocess
import utils.options as options
import shlex
import time
import rembg
from utils.util import EasyDict as edict
from PIL import Image
from utils.eval_3D import get_dense_3D_grid, compute_level_grid, convert_to_explicit
def get_1d_bounds(arr):
nz = np.flatnonzero(arr)
return nz[0], nz[-1]
def get_bbox_from_mask(mask, thr):
masks_for_box = (mask > thr).astype(np.float32)
assert masks_for_box.sum() > 0, "Empty mask!"
x0, x1 = get_1d_bounds(masks_for_box.sum(axis=-2))
y0, y1 = get_1d_bounds(masks_for_box.sum(axis=-1))
return x0, y0, x1, y1
def square_crop(image, bbox, crop_ratio=1.):
x1, y1, x2, y2 = bbox
h, w = y2-y1, x2-x1
yc, xc = (y1+y2)/2, (x1+x2)/2
S = max(h, w)*1.2
scale = S*crop_ratio
image = torchvision_F.crop(image, top=int(yc-scale/2), left=int(xc-scale/2), height=int(scale), width=int(scale))
return image
def preprocess_image(opt, image, bbox):
image = square_crop(image, bbox=bbox)
if image.size[0] != opt.W or image.size[1] != opt.H:
image = image.resize((opt.W, opt.H))
image = torchvision_F.to_tensor(image)
rgb, mask = image[:3], image[3:]
if opt.data.bgcolor is not None:
# replace background color using mask
rgb = rgb * mask + opt.data.bgcolor * (1 - mask)
mask = (mask > 0.5).float()
return rgb, mask
def get_image(opt, image_fname, mask_fname):
image = Image.open(image_fname).convert("RGB")
mask = Image.open(mask_fname).convert("L")
mask_np = np.array(mask)
#binarize
mask_np[mask_np <= 127] = 0
mask_np[mask_np >= 127] = 1.0
image = Image.merge("RGBA", (*image.split(), mask))
bbox = get_bbox_from_mask(mask_np, 0.5)
rgb_input_map, mask_input_map = preprocess_image(opt, image, bbox=bbox)
return rgb_input_map, mask_input_map
def get_intr(opt):
# load camera
f = 1.3875
K = torch.tensor([[f*opt.W, 0, opt.W/2],
[0, f*opt.H, opt.H/2],
[0, 0, 1]]).float()
return K
def get_pixel_grid(H, W, device='cuda'):
y_range = torch.arange(H, dtype=torch.float32).to(device)
x_range = torch.arange(W, dtype=torch.float32).to(device)
Y, X = torch.meshgrid(y_range, x_range, indexing='ij')
Z = torch.ones_like(Y).to(device)
xyz_grid = torch.stack([X, Y, Z],dim=-1).view(-1,3)
return xyz_grid
def unproj_depth(depth, intr):
'''
depth: [B, H, W]
intr: [B, 3, 3]
'''
batch_size, H, W = depth.shape
intr = intr.to(depth.device)
# [B, 3, 3]
K_inv = torch.linalg.inv(intr).float()
# [1, H*W,3]
pixel_grid = get_pixel_grid(H, W, depth.device).unsqueeze(0)
# [B, H*W,3]
pixel_grid = pixel_grid.repeat(batch_size, 1, 1)
# [B, 3, H*W]
ray_dirs = K_inv @ pixel_grid.permute(0, 2, 1).contiguous()
# [B, H*W, 3], in camera coordinates
seen_points = ray_dirs.permute(0, 2, 1).contiguous() * depth.view(batch_size, H*W, 1)
# [B, H, W, 3]
seen_points = seen_points.view(batch_size, H, W, 3)
return seen_points
def prepare_data(opt, image_path, mask_path):
var = edict()
rgb_input_map, mask_input_map = get_image(opt, image_path, mask_path)
intr = get_intr(opt)
var.rgb_input_map = rgb_input_map.unsqueeze(0).to(opt.device)
var.mask_input_map = mask_input_map.unsqueeze(0).to(opt.device)
var.intr = intr.unsqueeze(0).to(opt.device)
var.idx = torch.tensor([0]).to(opt.device).long()
var.pose_gt = False
return var
@torch.no_grad()
def marching_cubes(opt, var, impl_network, visualize_attn=False):
points_3D = get_dense_3D_grid(opt, var) # [B, N, N, N, 3]
level_vox, attn_vis = compute_level_grid(opt, impl_network, var.latent_depth, var.latent_semantic,
points_3D, var.rgb_input_map, visualize_attn)
if attn_vis: var.attn_vis = attn_vis
# occ_grids: a list of length B, each is [N, N, N]
*level_grids, = level_vox.cpu().numpy()
meshes = convert_to_explicit(opt, level_grids, isoval=0.5, to_pointcloud=False)
var.mesh_pred = meshes
return var
@torch.no_grad()
def infer_sample(opt, var, graph):
var = graph.forward(opt, var, training=False, get_loss=False)
var = marching_cubes(opt, var, graph.impl_network, visualize_attn=True)
return var.mesh_pred[0]
def infer(input_image_path, input_mask_path):
opt_cmd = options.parse_arguments(["--yaml=options/shape.yaml", "--datadir=examples", "--eval.vox_res=128", "--ckpt=/data/shape.ckpt"])
opt = options.set(opt_cmd=opt_cmd, safe_check=False)
opt.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# build model
print("Building model...")
opt.pretrain.depth = None
opt.arch.depth.pretrained = None
module = importlib.import_module("model.compute_graph.graph_shape")
graph = module.Graph(opt).to(opt.device)
# download checkpoint
if not os.path.isfile(opt.ckpt):
print("Downloading checkpoint...")
subprocess.run(
shlex.split(
"wget -q -O /data/shape.ckpt https://www.dropbox.com/scl/fi/hv3w9z59dqytievwviko4/shape.ckpt?rlkey=a2gut89kavrldmnt8b3df92oi&dl=0"
)
)
# wait if the checkpoint is still downloading
while not os.path.isfile(opt.ckpt):
time.sleep(1)
# load checkpoint
print("Loading checkpoint...")
checkpoint = torch.load(opt.ckpt, map_location=torch.device(opt.device))
graph.load_state_dict(checkpoint["graph"], strict=True)
graph.eval()
# load the data
print("Loading data...")
var = prepare_data(opt, input_image_path, input_mask_path)
# create the save dir
save_folder = os.path.join(opt.datadir, 'preds')
if os.path.isdir(save_folder):
shutil.rmtree(save_folder)
os.makedirs(save_folder)
opt.output_path = opt.datadir
# inference the model and save the results
print("Inferencing...")
mesh_pred = infer_sample(opt, var, graph)
# rotate the mesh upside down
mesh_pred.apply_transform(trimesh.transformations.rotation_matrix(np.pi, [1, 0, 0]))
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
mesh_pred.export(mesh_path.name, file_type="glb")
return mesh_path.name
def infer_wrapper_mask(input_image_path, input_mask_path):
return infer(input_image_path, input_mask_path)
def infer_wrapper_nomask(input_image_path):
input = Image.open(input_image_path)
segmented = rembg.remove(input)
mask = segmented.split()[-1]
mask_path = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
mask.save(mask_path.name)
return infer(input_image_path, mask_path.name), mask_path.name
def assert_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected or uploaded!")
def assert_mask_image(input_mask):
if input_mask is None:
raise gr.Error("No mask selected or uploaded! Please check the box if you do not have the mask.")
def demo_gradio():
with gr.Blocks(analytics_enabled=False) as demo_ui:
# HEADERS
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ZeroShape: Regression-based Zero-shot Shape Reconstruction')
gr.Markdown("[\[Arxiv\]](https://arxiv.org/pdf/2312.14198.pdf) | [\[Project\]](https://zixuanh.com/projects/zeroshape.html) | [\[GitHub\]](https://github.com/zxhuang1698/ZeroShape)")
gr.Markdown("Please switch to the \"Estimated Mask\" tab if you do not have the foreground mask. The demo will try to estimate the mask for you.")
# with mask
with gr.Tab("Groundtruth Mask"):
with gr.Row():
input_image_tab1 = gr.Image(label="Input Image", image_mode="RGB", sources="upload", type="filepath", elem_id="content_image", width=300)
mask_tab1 = gr.Image(label="Foreground Mask", image_mode="RGB", sources="upload", type="filepath", elem_id="content_image", width=300)
output_mesh_tab1 = gr.Model3D(label="Output Mesh")
with gr.Row():
submit_tab1 = gr.Button('Reconstruct', elem_id="recon_button_tab1", variant='primary')
# examples
with gr.Row():
examples_tab1 = [
['examples/images/armchair.png', 'examples/masks/armchair.png'],
['examples/images/bolt.png', 'examples/masks/bolt.png'],
['examples/images/bucket.png', 'examples/masks/bucket.png'],
['examples/images/case.png', 'examples/masks/case.png'],
['examples/images/dispenser.png', 'examples/masks/dispenser.png'],
['examples/images/hat.png', 'examples/masks/hat.png'],
['examples/images/teddy_bear.png', 'examples/masks/teddy_bear.png'],
['examples/images/tiger.png', 'examples/masks/tiger.png'],
['examples/images/toy.png', 'examples/masks/toy.png'],
['examples/images/wedding_cake.png', 'examples/masks/wedding_cake.png'],
]
gr.Examples(
examples=examples_tab1,
inputs=[input_image_tab1, mask_tab1],
outputs=[output_mesh_tab1],
fn=infer_wrapper_mask,
cache_examples=False#os.getenv('SYSTEM') == 'spaces',
)
# without mask
with gr.Tab("Estimated Mask"):
with gr.Row():
input_image_tab2 = gr.Image(label="Input Image", image_mode="RGB", sources="upload", type="filepath", elem_id="content_image", width=300)
mask_tab2 = gr.Image(label="Foreground Mask", image_mode="RGB", sources="upload", type="filepath", elem_id="content_image", width=300)
output_mesh_tab2 = gr.Model3D(label="Output Mesh")
with gr.Row():
submit_tab2 = gr.Button('Reconstruct', elem_id="recon_button_tab2", variant='primary')
# examples
with gr.Row():
examples_tab2 = [
['examples/images/armchair.png'],
['examples/images/bolt.png'],
['examples/images/bucket.png'],
['examples/images/case.png'],
['examples/images/dispenser.png'],
['examples/images/hat.png'],
['examples/images/teddy_bear.png'],
['examples/images/tiger.png'],
['examples/images/toy.png'],
['examples/images/wedding_cake.png'],
]
gr.Examples(
examples=examples_tab2,
inputs=[input_image_tab2],
outputs=[output_mesh_tab2, mask_tab2],
fn=infer_wrapper_nomask,
cache_examples=False#os.getenv('SYSTEM') == 'spaces',
)
submit_tab1.click(
fn=assert_input_image,
inputs=[input_image_tab1],
queue=False
).success(
fn=assert_mask_image,
inputs=[mask_tab1],
queue=False
).success(
fn=infer_wrapper_mask,
inputs=[input_image_tab1, mask_tab1],
outputs=[output_mesh_tab1],
)
submit_tab2.click(
fn=assert_input_image,
inputs=[input_image_tab2],
queue=False
).success(
fn=infer_wrapper_nomask,
inputs=[input_image_tab2],
outputs=[output_mesh_tab2, mask_tab2],
)
return demo_ui
if __name__ == "__main__":
demo_ui = demo_gradio()
demo_ui.queue(max_size=10)
demo_ui.launch() |