import torch import numpy as np import soundfile as sf from transformers import pipeline from transformers import BarkModel from transformers import AutoProcessor device = "cuda:0" if torch.cuda.is_available() else "cpu" pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v2", device=device ) label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device) processor = AutoProcessor.from_pretrained("suno/bark") model = BarkModel.from_pretrained("suno/bark") model = model.to(device) synthesised_rate = model.generation_config.sample_rate def translate(audio_file): audio, sampling_rate = sf.read(audio_file) outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"}) language_prediction = label({"array": audio, "sampling_rate": sampling_rate}) label_outputs = {} for pred in language_prediction: label_outputs[pred["label"]] = pred["score"] return outputs["text"],label_outputs def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"): inputs = processor(text_prompt, voice_preset=voice_preset) speech_output = model.generate(**inputs.to(device),pad_token_id=10000) return speech_output def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"): translated_text, label_outputs= translate(audio) synthesised_speech = synthesise(translated_text,voice_preset) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return (synthesised_rate , synthesised_speech.T),translated_text,label_outputs title = "外国话转中文话" description = """ 本演示调用了三个自然语言处理的大模型,一个用于将外国话翻译成中文,一个用于判断说的哪个国家的话,一个用于将中文转成语音输出。同时支持语音上传和麦克风输入转换速度比较慢因为租不起GPU的服务器(支出增加200倍),建议您通过已经缓存Examples体验效果。欢迎添加我的微信号:ESGGTP 与我的平行人交流。 ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ examples = [ ["./cs.wav", None], ["./de.wav", None], ["./fr.wav", None], ["./it.wav", None], ["./nl.wav", None], ["./pl.wav", None], ["./ro.wav", None], ["./hr.wav", None], ["./fi.wav", None], ["./sl.wav", None], ] import gradio as gr demo = gr.Blocks() file_transcribe = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=[ gr.Audio(label="Generated Speech", type="numpy"), gr.Text(label="Transcription"), gr.Label(label="Language prediction"), ], title=title, description=description, examples=examples, ) mic_transcribe = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=[ gr.Audio(label="Generated Speech", type="numpy"), gr.Text(label="Transcription"), gr.Label(label="Language prediction"), ], title=title, description=description, ) with demo: gr.TabbedInterface( [file_transcribe, mic_transcribe], ["Transcribe Audio File", "Transcribe Microphone"], ) demo.launch(share=True)