zongxiao's picture
Update app.py
9e2b006
raw
history blame
3.69 kB
import torch
import numpy as np
from transformers import pipeline
from transformers import BarkModel
from transformers import AutoProcessor
device="cpu"
pipe = pipeline(
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
)
processor = AutoProcessor.from_pretrained("suno/bark")
model = BarkModel.from_pretrained("suno/bark")
model = model.to(device)
synthesised_rate = model.generation_config.sample_rate
def translate(audio):
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
return outputs["text"]
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
inputs = processor(text_prompt, voice_preset=voice_preset)
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
return speech_output
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text,voice_preset)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return synthesised_rate , synthesised_speech , translated_text
def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"):
synthesised_rate,synthesised_speech ,translated_text= speech_to_speech_translation(audio,voice_preset)
return synthesised_rate,synthesised_speech.T,translated_text
title = "Multilanguage to Chinese(mandarin) Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Multilanguage to target speech in Chinese(mandarin). Demo uses OpenAI's [Whisper arge-v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and a suno/bark[bark-small](https://huggingface.co/suno/bark) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
examples = [
["./mama (1).mp3", None],
["./mama (2).mp3", None],
["./mama (3).mp3", None],
["./mama (4).mp3", None],
["./mama (5).mp3", None],
["./mama (6).mp3", None],
["./mama (7).mp3", None],
["./mama (8).mp3", None],
]
import gradio as gr
demo = gr.Blocks()
# Muti_translate=gr.Interface(
# fn=speech_to_speech_translation_fix,
# inputs=[
# gr.Audio(label="Upload Speech", source="upload", type="filepath"),
# gr.Audio(label="Record Speech", source="microphone", type="filepath"),
# ],
# outputs=[
# gr.Audio(label="Generated Speech", type="numpy"),
# gr.Text(label="Transcription"),
# ],
# title=title,
# description=description,
# examples=examples,
# )
mic_translate = gr.Interface(
fn=speech_to_speech_translation_fix,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation_fix,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=examples,
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
#gr.TabbedInterface([Muti_translate], ["Record or upload your speech"])
demo.launch(share=True)