diff --git a/Eng_docs.md b/Eng_docs.md
new file mode 100644
index 0000000000000000000000000000000000000000..10770870d46914dbdacd59de71fab421f7663104
--- /dev/null
+++ b/Eng_docs.md
@@ -0,0 +1,109 @@
+# SoftVC VITS Singing Voice Conversion
+
+## Updates
+> According to incomplete statistics, it seems that training with multiple speakers may lead to **worsened leaking of voice timbre**. It is not recommended to train models with more than 5 speakers. The current suggestion is to try to train models with only a single speaker if you want to achieve a voice timbre that is more similar to the target.
+> Fixed the issue with unwanted staccato, improving audio quality by a decent amount.\
+> The 2.0 version has been moved to the 2.0 branch.\
+> Version 3.0 uses the code structure of FreeVC, which isn't compatible with older versions.\
+> Compared to [DiffSVC](https://github.com/prophesier/diff-svc) , diffsvc performs much better when the training data is of extremely high quality, but this repository may perform better on datasets with lower quality. Additionally, this repository is much faster in terms of inference speed compared to diffsvc.
+
+## Model Overview
+A singing voice coversion (SVC) model, using the SoftVC encoder to extract features from the input audio, sent into VITS along with the F0 to replace the original input to acheive a voice conversion effect. Additionally, changing the vocoder to [NSF HiFiGAN](https://github.com/openvpi/DiffSinger/tree/refactor/modules/nsf_hifigan) to fix the issue with unwanted staccato.
+
+## Notice
++ The current branch is the 32kHz version, which requires less vram during inferencing, as well as faster inferencing speeds, and datasets for said branch take up less disk space. Thus the 32 kHz branch is recommended for use.
++ If you want to train 48 kHz variant models, switch to the [main branch](https://github.com/innnky/so-vits-svc/tree/main).
+
+
+## Required models
++ soft vc hubert:[hubert-soft-0d54a1f4.pt](https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt)
+ + Place under `hubert`.
++ Pretrained models [G_0.pth](https://huggingface.co/innnky/sovits_pretrained/resolve/main/G_0.pth) and [D_0.pth](https://huggingface.co/innnky/sovits_pretrained/resolve/main/D_0.pth)
+ + Place under `logs/32k`.
+ + Pretrained models are required, because from experiments, training from scratch can be rather unpredictable to say the least, and training with a pretrained model can greatly improve training speeds.
+ + The pretrained model includes云灏, 即霜, 辉宇·星AI, 派蒙, and 绫地宁宁, covering the common ranges of both male and female voices, and so it can be seen as a rather universal pretrained model.
+ + The pretrained model exludes the `optimizer speaker_embedding` section, rendering it only usable for pretraining and incapable of inferencing with.
+```shell
+# For simple downloading.
+# hubert
+wget -P hubert/ https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt
+# G&D pretrained models
+wget -P logs/32k/ https://huggingface.co/innnky/sovits_pretrained/resolve/main/G_0.pth
+wget -P logs/32k/ https://huggingface.co/innnky/sovits_pretrained/resolve/main/D_0.pth
+
+```
+
+## Colab notebook script for dataset creation and training.
+[colab training notebook](https://colab.research.google.com/drive/1rCUOOVG7-XQlVZuWRAj5IpGrMM8t07pE?usp=sharing)
+
+## Dataset preparation
+All that is required is that the data be put under the `dataset_raw` folder in the structure format provided below.
+```shell
+dataset_raw
+├───speaker0
+│ ├───xxx1-xxx1.wav
+│ ├───...
+│ └───Lxx-0xx8.wav
+└───speaker1
+ ├───xx2-0xxx2.wav
+ ├───...
+ └───xxx7-xxx007.wav
+```
+
+## Data pre-processing.
+1. Resample to 32khz
+
+```shell
+python resample.py
+ ```
+2. Automatically sort out training set, validation set, test set, and automatically generate configuration files.
+```shell
+python preprocess_flist_config.py
+# Notice.
+# The n_speakers value in the config will be set automatically according to the amount of speakers in the dataset.
+# To reserve space for additionally added speakers in the dataset, the n_speakers value will be be set to twice the actual amount.
+# If you want even more space for adding more data, you can edit the n_speakers value in the config after runing this step.
+# This can not be changed after training starts.
+```
+3. Generate hubert and F0 features/
+```shell
+python preprocess_hubert_f0.py
+```
+After running the step above, the `dataset` folder will contain all the pre-processed data, you can delete the `dataset_raw` folder after that.
+
+## Training.
+```shell
+python train.py -c configs/config.json -m 32k
+```
+
+## Inferencing.
+
+Use [inference_main.py](inference_main.py)
++ Edit `model_path` to your newest checkpoint.
++ Place the input audio under the `raw` folder.
++ Change `clean_names` to the output file name.
++ Use `trans` to edit the pitch shifting amount (semitones).
++ Change `spk_list` to the speaker name.
+
+## Onnx Exporting.
+### **When exporting Onnx, please make sure you re-clone the whole repository!!!**
+Use [onnx_export.py](onnx_export.py)
++ Create a new folder called `checkpoints`.
++ Create a project folder in `checkpoints` folder with the desired name for your project, let's use `myproject` as example. Folder structure looks like `./checkpoints/myproject`.
++ Rename your model to `model.pth`, rename your config file to `config.json` then move them into `myproject` folder.
++ Modify [onnx_export.py](onnx_export.py) where `path = "NyaruTaffy"`, change `NyaruTaffy` to your project name, here it will be `path = "myproject"`.
++ Run [onnx_export.py](onnx_export.py)
++ Once it finished, a `model.onnx` will be generated in `myproject` folder, that's the model you just exported.
++ Notice: if you want to export a 48K model, please follow the instruction below or use `model_onnx_48k.py` directly.
+ + Open [model_onnx.py](model_onnx.py) and change `hps={"sampling_rate": 32000...}` to `hps={"sampling_rate": 48000}` in class `SynthesizerTrn`.
+ + Open [nvSTFT](/vdecoder/hifigan/nvSTFT.py) and replace all `32000` with `48000`
+ ### Onnx Model UI Support
+ + [MoeSS](https://github.com/NaruseMioShirakana/MoeSS)
++ All training function and transformation are removed, only if they are all removed you are actually using Onnx.
+
+## Gradio (WebUI)
+Use [sovits_gradio.py](sovits_gradio.py) to run Gradio WebUI
++ Create a new folder called `checkpoints`.
++ Create a project folder in `checkpoints` folder with the desired name for your project, let's use `myproject` as example. Folder structure looks like `./checkpoints/myproject`.
++ Rename your model to `model.pth`, rename your config file to `config.json` then move them into `myproject` folder.
++ Run [sovits_gradio.py](sovits_gradio.py)
\ No newline at end of file
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..c657cab45c850057a63b3605897f5195f3c4ac02
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,407 @@
+Attribution-NonCommercial 4.0 International
+
+=======================================================================
+
+Creative Commons Corporation ("Creative Commons") is not a law firm and
+does not provide legal services or legal advice. Distribution of
+Creative Commons public licenses does not create a lawyer-client or
+other relationship. Creative Commons makes its licenses and related
+information available on an "as-is" basis. Creative Commons gives no
+warranties regarding its licenses, any material licensed under their
+terms and conditions, or any related information. Creative Commons
+disclaims all liability for damages resulting from their use to the
+fullest extent possible.
+
+Using Creative Commons Public Licenses
+
+Creative Commons public licenses provide a standard set of terms and
+conditions that creators and other rights holders may use to share
+original works of authorship and other material subject to copyright
+and certain other rights specified in the public license below. The
+following considerations are for informational purposes only, are not
+exhaustive, and do not form part of our licenses.
+
+ Considerations for licensors: Our public licenses are
+ intended for use by those authorized to give the public
+ permission to use material in ways otherwise restricted by
+ copyright and certain other rights. Our licenses are
+ irrevocable. Licensors should read and understand the terms
+ and conditions of the license they choose before applying it.
+ Licensors should also secure all rights necessary before
+ applying our licenses so that the public can reuse the
+ material as expected. Licensors should clearly mark any
+ material not subject to the license. This includes other CC-
+ licensed material, or material used under an exception or
+ limitation to copyright. More considerations for licensors:
+ wiki.creativecommons.org/Considerations_for_licensors
+
+ Considerations for the public: By using one of our public
+ licenses, a licensor grants the public permission to use the
+ licensed material under specified terms and conditions. If
+ the licensor's permission is not necessary for any reason--for
+ example, because of any applicable exception or limitation to
+ copyright--then that use is not regulated by the license. Our
+ licenses grant only permissions under copyright and certain
+ other rights that a licensor has authority to grant. Use of
+ the licensed material may still be restricted for other
+ reasons, including because others have copyright or other
+ rights in the material. A licensor may make special requests,
+ such as asking that all changes be marked or described.
+ Although not required by our licenses, you are encouraged to
+ respect those requests where reasonable. More considerations
+ for the public:
+ wiki.creativecommons.org/Considerations_for_licensees
+
+=======================================================================
+
+Creative Commons Attribution-NonCommercial 4.0 International Public
+License
+
+By exercising the Licensed Rights (defined below), You accept and agree
+to be bound by the terms and conditions of this Creative Commons
+Attribution-NonCommercial 4.0 International Public License ("Public
+License"). To the extent this Public License may be interpreted as a
+contract, You are granted the Licensed Rights in consideration of Your
+acceptance of these terms and conditions, and the Licensor grants You
+such rights in consideration of benefits the Licensor receives from
+making the Licensed Material available under these terms and
+conditions.
+
+
+Section 1 -- Definitions.
+
+ a. Adapted Material means material subject to Copyright and Similar
+ Rights that is derived from or based upon the Licensed Material
+ and in which the Licensed Material is translated, altered,
+ arranged, transformed, or otherwise modified in a manner requiring
+ permission under the Copyright and Similar Rights held by the
+ Licensor. For purposes of this Public License, where the Licensed
+ Material is a musical work, performance, or sound recording,
+ Adapted Material is always produced where the Licensed Material is
+ synched in timed relation with a moving image.
+
+ b. Adapter's License means the license You apply to Your Copyright
+ and Similar Rights in Your contributions to Adapted Material in
+ accordance with the terms and conditions of this Public License.
+
+ c. Copyright and Similar Rights means copyright and/or similar rights
+ closely related to copyright including, without limitation,
+ performance, broadcast, sound recording, and Sui Generis Database
+ Rights, without regard to how the rights are labeled or
+ categorized. For purposes of this Public License, the rights
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
+ Rights.
+ d. Effective Technological Measures means those measures that, in the
+ absence of proper authority, may not be circumvented under laws
+ fulfilling obligations under Article 11 of the WIPO Copyright
+ Treaty adopted on December 20, 1996, and/or similar international
+ agreements.
+
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
+ any other exception or limitation to Copyright and Similar Rights
+ that applies to Your use of the Licensed Material.
+
+ f. Licensed Material means the artistic or literary work, database,
+ or other material to which the Licensor applied this Public
+ License.
+
+ g. Licensed Rights means the rights granted to You subject to the
+ terms and conditions of this Public License, which are limited to
+ all Copyright and Similar Rights that apply to Your use of the
+ Licensed Material and that the Licensor has authority to license.
+
+ h. Licensor means the individual(s) or entity(ies) granting rights
+ under this Public License.
+
+ i. NonCommercial means not primarily intended for or directed towards
+ commercial advantage or monetary compensation. For purposes of
+ this Public License, the exchange of the Licensed Material for
+ other material subject to Copyright and Similar Rights by digital
+ file-sharing or similar means is NonCommercial provided there is
+ no payment of monetary compensation in connection with the
+ exchange.
+
+ j. Share means to provide material to the public by any means or
+ process that requires permission under the Licensed Rights, such
+ as reproduction, public display, public performance, distribution,
+ dissemination, communication, or importation, and to make material
+ available to the public including in ways that members of the
+ public may access the material from a place and at a time
+ individually chosen by them.
+
+ k. Sui Generis Database Rights means rights other than copyright
+ resulting from Directive 96/9/EC of the European Parliament and of
+ the Council of 11 March 1996 on the legal protection of databases,
+ as amended and/or succeeded, as well as other essentially
+ equivalent rights anywhere in the world.
+
+ l. You means the individual or entity exercising the Licensed Rights
+ under this Public License. Your has a corresponding meaning.
+
+
+Section 2 -- Scope.
+
+ a. License grant.
+
+ 1. Subject to the terms and conditions of this Public License,
+ the Licensor hereby grants You a worldwide, royalty-free,
+ non-sublicensable, non-exclusive, irrevocable license to
+ exercise the Licensed Rights in the Licensed Material to:
+
+ a. reproduce and Share the Licensed Material, in whole or
+ in part, for NonCommercial purposes only; and
+
+ b. produce, reproduce, and Share Adapted Material for
+ NonCommercial purposes only.
+
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
+ Exceptions and Limitations apply to Your use, this Public
+ License does not apply, and You do not need to comply with
+ its terms and conditions.
+
+ 3. Term. The term of this Public License is specified in Section
+ 6(a).
+
+ 4. Media and formats; technical modifications allowed. The
+ Licensor authorizes You to exercise the Licensed Rights in
+ all media and formats whether now known or hereafter created,
+ and to make technical modifications necessary to do so. The
+ Licensor waives and/or agrees not to assert any right or
+ authority to forbid You from making technical modifications
+ necessary to exercise the Licensed Rights, including
+ technical modifications necessary to circumvent Effective
+ Technological Measures. For purposes of this Public License,
+ simply making modifications authorized by this Section 2(a)
+ (4) never produces Adapted Material.
+
+ 5. Downstream recipients.
+
+ a. Offer from the Licensor -- Licensed Material. Every
+ recipient of the Licensed Material automatically
+ receives an offer from the Licensor to exercise the
+ Licensed Rights under the terms and conditions of this
+ Public License.
+
+ b. No downstream restrictions. You may not offer or impose
+ any additional or different terms or conditions on, or
+ apply any Effective Technological Measures to, the
+ Licensed Material if doing so restricts exercise of the
+ Licensed Rights by any recipient of the Licensed
+ Material.
+
+ 6. No endorsement. Nothing in this Public License constitutes or
+ may be construed as permission to assert or imply that You
+ are, or that Your use of the Licensed Material is, connected
+ with, or sponsored, endorsed, or granted official status by,
+ the Licensor or others designated to receive attribution as
+ provided in Section 3(a)(1)(A)(i).
+
+ b. Other rights.
+
+ 1. Moral rights, such as the right of integrity, are not
+ licensed under this Public License, nor are publicity,
+ privacy, and/or other similar personality rights; however, to
+ the extent possible, the Licensor waives and/or agrees not to
+ assert any such rights held by the Licensor to the limited
+ extent necessary to allow You to exercise the Licensed
+ Rights, but not otherwise.
+
+ 2. Patent and trademark rights are not licensed under this
+ Public License.
+
+ 3. To the extent possible, the Licensor waives any right to
+ collect royalties from You for the exercise of the Licensed
+ Rights, whether directly or through a collecting society
+ under any voluntary or waivable statutory or compulsory
+ licensing scheme. In all other cases the Licensor expressly
+ reserves any right to collect such royalties, including when
+ the Licensed Material is used other than for NonCommercial
+ purposes.
+
+
+Section 3 -- License Conditions.
+
+Your exercise of the Licensed Rights is expressly made subject to the
+following conditions.
+
+ a. Attribution.
+
+ 1. If You Share the Licensed Material (including in modified
+ form), You must:
+
+ a. retain the following if it is supplied by the Licensor
+ with the Licensed Material:
+
+ i. identification of the creator(s) of the Licensed
+ Material and any others designated to receive
+ attribution, in any reasonable manner requested by
+ the Licensor (including by pseudonym if
+ designated);
+
+ ii. a copyright notice;
+
+ iii. a notice that refers to this Public License;
+
+ iv. a notice that refers to the disclaimer of
+ warranties;
+
+ v. a URI or hyperlink to the Licensed Material to the
+ extent reasonably practicable;
+
+ b. indicate if You modified the Licensed Material and
+ retain an indication of any previous modifications; and
+
+ c. indicate the Licensed Material is licensed under this
+ Public License, and include the text of, or the URI or
+ hyperlink to, this Public License.
+
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
+ reasonable manner based on the medium, means, and context in
+ which You Share the Licensed Material. For example, it may be
+ reasonable to satisfy the conditions by providing a URI or
+ hyperlink to a resource that includes the required
+ information.
+
+ 3. If requested by the Licensor, You must remove any of the
+ information required by Section 3(a)(1)(A) to the extent
+ reasonably practicable.
+
+ 4. If You Share Adapted Material You produce, the Adapter's
+ License You apply must not prevent recipients of the Adapted
+ Material from complying with this Public License.
+
+
+Section 4 -- Sui Generis Database Rights.
+
+Where the Licensed Rights include Sui Generis Database Rights that
+apply to Your use of the Licensed Material:
+
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
+ to extract, reuse, reproduce, and Share all or a substantial
+ portion of the contents of the database for NonCommercial purposes
+ only;
+
+ b. if You include all or a substantial portion of the database
+ contents in a database in which You have Sui Generis Database
+ Rights, then the database in which You have Sui Generis Database
+ Rights (but not its individual contents) is Adapted Material; and
+
+ c. You must comply with the conditions in Section 3(a) if You Share
+ all or a substantial portion of the contents of the database.
+
+For the avoidance of doubt, this Section 4 supplements and does not
+replace Your obligations under this Public License where the Licensed
+Rights include other Copyright and Similar Rights.
+
+
+Section 5 -- Disclaimer of Warranties and Limitation of Liability.
+
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
+
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
+
+ c. The disclaimer of warranties and limitation of liability provided
+ above shall be interpreted in a manner that, to the extent
+ possible, most closely approximates an absolute disclaimer and
+ waiver of all liability.
+
+
+Section 6 -- Term and Termination.
+
+ a. This Public License applies for the term of the Copyright and
+ Similar Rights licensed here. However, if You fail to comply with
+ this Public License, then Your rights under this Public License
+ terminate automatically.
+
+ b. Where Your right to use the Licensed Material has terminated under
+ Section 6(a), it reinstates:
+
+ 1. automatically as of the date the violation is cured, provided
+ it is cured within 30 days of Your discovery of the
+ violation; or
+
+ 2. upon express reinstatement by the Licensor.
+
+ For the avoidance of doubt, this Section 6(b) does not affect any
+ right the Licensor may have to seek remedies for Your violations
+ of this Public License.
+
+ c. For the avoidance of doubt, the Licensor may also offer the
+ Licensed Material under separate terms or conditions or stop
+ distributing the Licensed Material at any time; however, doing so
+ will not terminate this Public License.
+
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
+ License.
+
+
+Section 7 -- Other Terms and Conditions.
+
+ a. The Licensor shall not be bound by any additional or different
+ terms or conditions communicated by You unless expressly agreed.
+
+ b. Any arrangements, understandings, or agreements regarding the
+ Licensed Material not stated herein are separate from and
+ independent of the terms and conditions of this Public License.
+
+
+Section 8 -- Interpretation.
+
+ a. For the avoidance of doubt, this Public License does not, and
+ shall not be interpreted to, reduce, limit, restrict, or impose
+ conditions on any use of the Licensed Material that could lawfully
+ be made without permission under this Public License.
+
+ b. To the extent possible, if any provision of this Public License is
+ deemed unenforceable, it shall be automatically reformed to the
+ minimum extent necessary to make it enforceable. If the provision
+ cannot be reformed, it shall be severed from this Public License
+ without affecting the enforceability of the remaining terms and
+ conditions.
+
+ c. No term or condition of this Public License will be waived and no
+ failure to comply consented to unless expressly agreed to by the
+ Licensor.
+
+ d. Nothing in this Public License constitutes or may be interpreted
+ as a limitation upon, or waiver of, any privileges and immunities
+ that apply to the Licensor or You, including from the legal
+ processes of any jurisdiction or authority.
+
+=======================================================================
+
+Creative Commons is not a party to its public
+licenses. Notwithstanding, Creative Commons may elect to apply one of
+its public licenses to material it publishes and in those instances
+will be considered the “Licensor.” The text of the Creative Commons
+public licenses is dedicated to the public domain under the CC0 Public
+Domain Dedication. Except for the limited purpose of indicating that
+material is shared under a Creative Commons public license or as
+otherwise permitted by the Creative Commons policies published at
+creativecommons.org/policies, Creative Commons does not authorize the
+use of the trademark "Creative Commons" or any other trademark or logo
+of Creative Commons without its prior written consent including,
+without limitation, in connection with any unauthorized modifications
+to any of its public licenses or any other arrangements,
+understandings, or agreements concerning use of licensed material. For
+the avoidance of doubt, this paragraph does not form part of the
+public licenses.
+
+Creative Commons may be contacted at creativecommons.org.
diff --git a/README.md b/README.md
index ae52d3c6d9d4536c8a15485c68a3692d9c01b74f..eec4d7e8b387abf06265a316195893ecd6e5383d 100644
--- a/README.md
+++ b/README.md
@@ -1,13 +1,11 @@
---
title: Sovits Umamusume
-emoji: 💻
-colorFrom: blue
-colorTo: purple
+emoji: 🐎
+colorFrom: gray
+colorTo: pink
sdk: gradio
-sdk_version: 3.19.1
+sdk_version: 3.18.0
app_file: app.py
pinned: false
license: mit
---
-
-Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..890deb0b10381271a1720ca56be7811364bb474d
--- /dev/null
+++ b/app.py
@@ -0,0 +1,75 @@
+import io
+import os
+import gradio as gr
+import librosa
+import numpy as np
+import soundfile
+from inference.infer_tool import Svc
+import logging
+
+logging.getLogger('numba').setLevel(logging.WARNING)
+logging.getLogger('markdown_it').setLevel(logging.WARNING)
+logging.getLogger('urllib3').setLevel(logging.WARNING)
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+
+def create_vc_fn(model, sid):
+ def vc_fn(input_audio, vc_transform, auto_f0):
+ if input_audio is None:
+ return "You need to upload an audio", None
+ sampling_rate, audio = input_audio
+ # print(audio.shape,sampling_rate)
+ duration = audio.shape[0] / sampling_rate
+ if duration > 45:
+ return "Please upload an audio file that is less than 45 seconds. If you need to generate a longer audio file, please use Colab.", None
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio.transpose(1, 0))
+ if sampling_rate != 16000:
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
+ out_wav_path = "temp.wav"
+ soundfile.write(out_wav_path, audio, 16000, format="wav")
+ out_audio, out_sr = model.infer(sid, vc_transform, out_wav_path,
+ auto_predict_f0=auto_f0,
+ )
+ return "Success", (44100, out_audio.cpu().numpy())
+ return vc_fn
+
+if __name__ == '__main__':
+ models = []
+ for f in os.listdir("models"):
+ name = f
+ model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json")
+ cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
+ models.append((name, cover, create_vc_fn(model, name)))
+ with gr.Blocks() as app:
+ gr.Markdown(
+ "#
Sovits Umamusume\n"
+ "## The input audio should be clean and pure voice without background music.\n"
+ "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.vits-models)\n\n"
+ "[Open In Colab]()"
+ "\n\n"
+ "[Original Repo](https://github.com/innnky/so-vits-svc/tree/4.0)"
+ )
+ with gr.Tabs():
+ for (name, cover, vc_fn) in models:
+ with gr.TabItem(name):
+ with gr.Row():
+ gr.Markdown(
+ ''
+ f'
' if cover else ""
+ '
'
+ )
+ with gr.Row():
+ with gr.Column():
+ vc_input = gr.Audio(label="Input audio (less than 45 seconds)")
+ vc_transform = gr.Number(label="vc_transform", value=0)
+ auto_f0 = gr.Checkbox(label="auto_f0", value=False)
+ vc_submit = gr.Button("Generate", variant="primary")
+ with gr.Column():
+ vc_output1 = gr.Textbox(label="Output Message")
+ vc_output2 = gr.Audio(label="Output Audio")
+ vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0], [vc_output1, vc_output2])
+ app.queue(concurrency_count=1).launch()
+
+
+
diff --git a/cluster/__init__.py b/cluster/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1b9bde04e73e9218a5d534227caa4c25332f424
--- /dev/null
+++ b/cluster/__init__.py
@@ -0,0 +1,29 @@
+import numpy as np
+import torch
+from sklearn.cluster import KMeans
+
+def get_cluster_model(ckpt_path):
+ checkpoint = torch.load(ckpt_path)
+ kmeans_dict = {}
+ for spk, ckpt in checkpoint.items():
+ km = KMeans(ckpt["n_features_in_"])
+ km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
+ km.__dict__["_n_threads"] = ckpt["_n_threads"]
+ km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
+ kmeans_dict[spk] = km
+ return kmeans_dict
+
+def get_cluster_result(model, x, speaker):
+ """
+ x: np.array [t, 256]
+ return cluster class result
+ """
+ return model[speaker].predict(x)
+
+def get_cluster_center_result(model, x,speaker):
+ """x: np.array [t, 256]"""
+ predict = model[speaker].predict(x)
+ return model[speaker].cluster_centers_[predict]
+
+def get_center(model, x,speaker):
+ return model[speaker].cluster_centers_[x]
diff --git a/cluster/__pycache__/__init__.cpython-38.pyc b/cluster/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..54a758df1195cdbe3fe2d63254085baaf4af4a0a
Binary files /dev/null and b/cluster/__pycache__/__init__.cpython-38.pyc differ
diff --git a/cluster/train_cluster.py b/cluster/train_cluster.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ac025d400414226e66849407f477ae786c3d5d3
--- /dev/null
+++ b/cluster/train_cluster.py
@@ -0,0 +1,89 @@
+import os
+from glob import glob
+from pathlib import Path
+import torch
+import logging
+import argparse
+import torch
+import numpy as np
+from sklearn.cluster import KMeans, MiniBatchKMeans
+import tqdm
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(__name__)
+import time
+import random
+
+def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False):
+
+ logger.info(f"Loading features from {in_dir}")
+ features = []
+ nums = 0
+ for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
+ features.append(torch.load(path).squeeze(0).numpy().T)
+ # print(features[-1].shape)
+ features = np.concatenate(features, axis=0)
+ print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
+ features = features.astype(np.float32)
+ logger.info(f"Clustering features of shape: {features.shape}")
+ t = time.time()
+ if use_minibatch:
+ kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
+ else:
+ kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
+ print(time.time()-t, "s")
+
+ x = {
+ "n_features_in_": kmeans.n_features_in_,
+ "_n_threads": kmeans._n_threads,
+ "cluster_centers_": kmeans.cluster_centers_,
+ }
+ print("end")
+
+ return x
+
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--dataset', type=Path, default="./dataset/44k",
+ help='path of training data directory')
+ parser.add_argument('--output', type=Path, default="logs/44k",
+ help='path of model output directory')
+
+ args = parser.parse_args()
+
+ checkpoint_dir = args.output
+ dataset = args.dataset
+ n_clusters = 10000
+
+ ckpt = {}
+ for spk in os.listdir(dataset):
+ if os.path.isdir(dataset/spk):
+ print(f"train kmeans for {spk}...")
+ in_dir = dataset/spk
+ x = train_cluster(in_dir, n_clusters, verbose=False)
+ ckpt[spk] = x
+
+ checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
+ checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
+ torch.save(
+ ckpt,
+ checkpoint_path,
+ )
+
+
+ # import cluster
+ # for spk in tqdm.tqdm(os.listdir("dataset")):
+ # if os.path.isdir(f"dataset/{spk}"):
+ # print(f"start kmeans inference for {spk}...")
+ # for feature_path in tqdm.tqdm(glob(f"dataset/{spk}/*.discrete.npy", recursive=True)):
+ # mel_path = feature_path.replace(".discrete.npy",".mel.npy")
+ # mel_spectrogram = np.load(mel_path)
+ # feature_len = mel_spectrogram.shape[-1]
+ # c = np.load(feature_path)
+ # c = utils.tools.repeat_expand_2d(torch.FloatTensor(c), feature_len).numpy()
+ # feature = c.T
+ # feature_class = cluster.get_cluster_result(feature, spk)
+ # np.save(feature_path.replace(".discrete.npy", ".discrete_class.npy"), feature_class)
+
+
diff --git a/configs/config.json b/configs/config.json
new file mode 100644
index 0000000000000000000000000000000000000000..359a4e7e8d57f7cec91939d7c178490e18727208
--- /dev/null
+++ b/configs/config.json
@@ -0,0 +1,64 @@
+{
+ "train": {
+ "log_interval": 200,
+ "eval_interval": 800,
+ "seed": 1234,
+ "epochs": 10000,
+ "learning_rate": 0.0001,
+ "betas": [
+ 0.8,
+ 0.99
+ ],
+ "eps": 1e-09,
+ "batch_size": 6,
+ "fp16_run": false,
+ "lr_decay": 0.999875,
+ "segment_size": 10240,
+ "init_lr_ratio": 1,
+ "warmup_epochs": 0,
+ "c_mel": 45,
+ "c_kl": 1.0,
+ "use_sr": true,
+ "max_speclen": 512,
+ "port": "8001"
+ },
+ "data": {
+ "training_files": "filelists/train.txt",
+ "validation_files": "filelists/val.txt",
+ "max_wav_value": 32768.0,
+ "sampling_rate": 44100,
+ "filter_length": 2048,
+ "hop_length": 512,
+ "win_length": 2048,
+ "n_mel_channels": 80,
+ "mel_fmin": 0.0,
+ "mel_fmax": 22050
+ },
+ "model": {
+ "inter_channels": 192,
+ "hidden_channels": 192,
+ "filter_channels": 768,
+ "n_heads": 2,
+ "n_layers": 6,
+ "kernel_size": 3,
+ "p_dropout": 0.1,
+ "resblock": "1",
+ "resblock_kernel_sizes": [3,7,11],
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
+ "upsample_rates": [ 8, 8, 2, 2, 2],
+ "upsample_initial_channel": 512,
+ "upsample_kernel_sizes": [16,16, 4, 4, 4],
+ "n_layers_q": 3,
+ "use_spectral_norm": false,
+ "gin_channels": 256,
+ "ssl_dim": 256,
+ "n_speakers": 200
+ },
+ "spk": {
+ "jishuang": 0,
+ "huiyu": 1,
+ "nen": 2,
+ "paimon": 3,
+ "yunhao": 4
+ }
+}
\ No newline at end of file
diff --git a/cvec/checkpoint_best_legacy_500.pt b/cvec/checkpoint_best_legacy_500.pt
new file mode 100644
index 0000000000000000000000000000000000000000..6ffe5cf505f711312f60fc95a50e2a04fa6f5f7b
--- /dev/null
+++ b/cvec/checkpoint_best_legacy_500.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:294a2e8c98136070a999e040ec98dfa5a99b88a7938181c56cc2ab0e2f6ce0e8
+size 48501067
diff --git a/data_utils.py b/data_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..bd67adc7d42da7b9ff4ca11e543d8cc9cd34e60b
--- /dev/null
+++ b/data_utils.py
@@ -0,0 +1,142 @@
+import time
+import os
+import random
+import numpy as np
+import torch
+import torch.utils.data
+
+import modules.commons as commons
+import utils
+from modules.mel_processing import spectrogram_torch, spec_to_mel_torch
+from utils import load_wav_to_torch, load_filepaths_and_text
+
+# import h5py
+
+
+"""Multi speaker version"""
+
+
+class TextAudioSpeakerLoader(torch.utils.data.Dataset):
+ """
+ 1) loads audio, speaker_id, text pairs
+ 2) normalizes text and converts them to sequences of integers
+ 3) computes spectrograms from audio files.
+ """
+
+ def __init__(self, audiopaths, hparams):
+ self.audiopaths = load_filepaths_and_text(audiopaths)
+ self.max_wav_value = hparams.data.max_wav_value
+ self.sampling_rate = hparams.data.sampling_rate
+ self.filter_length = hparams.data.filter_length
+ self.hop_length = hparams.data.hop_length
+ self.win_length = hparams.data.win_length
+ self.sampling_rate = hparams.data.sampling_rate
+ self.use_sr = hparams.train.use_sr
+ self.spec_len = hparams.train.max_speclen
+ self.spk_map = hparams.spk
+
+ random.seed(1234)
+ random.shuffle(self.audiopaths)
+
+ def get_audio(self, filename):
+ filename = filename.replace("\\", "/")
+ audio, sampling_rate = load_wav_to_torch(filename)
+ if sampling_rate != self.sampling_rate:
+ raise ValueError("{} SR doesn't match target {} SR".format(
+ sampling_rate, self.sampling_rate))
+ audio_norm = audio / self.max_wav_value
+ audio_norm = audio_norm.unsqueeze(0)
+ spec_filename = filename.replace(".wav", ".spec.pt")
+ if os.path.exists(spec_filename):
+ spec = torch.load(spec_filename)
+ else:
+ spec = spectrogram_torch(audio_norm, self.filter_length,
+ self.sampling_rate, self.hop_length, self.win_length,
+ center=False)
+ spec = torch.squeeze(spec, 0)
+ torch.save(spec, spec_filename)
+
+ spk = filename.split("/")[-2]
+ spk = torch.LongTensor([self.spk_map[spk]])
+
+ f0 = np.load(filename + ".f0.npy")
+ f0, uv = utils.interpolate_f0(f0)
+ f0 = torch.FloatTensor(f0)
+ uv = torch.FloatTensor(uv)
+
+ c = torch.load(filename+ ".soft.pt")
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
+
+
+ lmin = min(c.size(-1), spec.size(-1))
+ assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename)
+ assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
+ spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
+ audio_norm = audio_norm[:, :lmin * self.hop_length]
+ if spec.shape[1] < 60:
+ print("skip too short audio:", filename)
+ return None
+ if spec.shape[1] > 800:
+ start = random.randint(0, spec.shape[1]-800)
+ end = start + 790
+ spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
+ audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
+
+ return c, f0, spec, audio_norm, spk, uv
+
+ def __getitem__(self, index):
+ return self.get_audio(self.audiopaths[index][0])
+
+ def __len__(self):
+ return len(self.audiopaths)
+
+
+class TextAudioCollate:
+
+ def __call__(self, batch):
+ batch = [b for b in batch if b is not None]
+
+ input_lengths, ids_sorted_decreasing = torch.sort(
+ torch.LongTensor([x[0].shape[1] for x in batch]),
+ dim=0, descending=True)
+
+ max_c_len = max([x[0].size(1) for x in batch])
+ max_wav_len = max([x[3].size(1) for x in batch])
+
+ lengths = torch.LongTensor(len(batch))
+
+ c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
+ f0_padded = torch.FloatTensor(len(batch), max_c_len)
+ spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
+ spkids = torch.LongTensor(len(batch), 1)
+ uv_padded = torch.FloatTensor(len(batch), max_c_len)
+
+ c_padded.zero_()
+ spec_padded.zero_()
+ f0_padded.zero_()
+ wav_padded.zero_()
+ uv_padded.zero_()
+
+ for i in range(len(ids_sorted_decreasing)):
+ row = batch[ids_sorted_decreasing[i]]
+
+ c = row[0]
+ c_padded[i, :, :c.size(1)] = c
+ lengths[i] = c.size(1)
+
+ f0 = row[1]
+ f0_padded[i, :f0.size(0)] = f0
+
+ spec = row[2]
+ spec_padded[i, :, :spec.size(1)] = spec
+
+ wav = row[3]
+ wav_padded[i, :, :wav.size(1)] = wav
+
+ spkids[i, 0] = row[4]
+
+ uv = row[5]
+ uv_padded[i, :uv.size(0)] = uv
+
+ return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded
diff --git a/flask_api.py b/flask_api.py
new file mode 100644
index 0000000000000000000000000000000000000000..8cc236a1c34c9ddeddea99bcea13024fb0ccc90b
--- /dev/null
+++ b/flask_api.py
@@ -0,0 +1,56 @@
+import io
+import logging
+
+import soundfile
+import torch
+import torchaudio
+from flask import Flask, request, send_file
+from flask_cors import CORS
+
+from inference.infer_tool import Svc, RealTimeVC
+
+app = Flask(__name__)
+
+CORS(app)
+
+logging.getLogger('numba').setLevel(logging.WARNING)
+
+
+@app.route("/voiceChangeModel", methods=["POST"])
+def voice_change_model():
+ request_form = request.form
+ wave_file = request.files.get("sample", None)
+ # 变调信息
+ f_pitch_change = float(request_form.get("fPitchChange", 0))
+ # DAW所需的采样率
+ daw_sample = int(float(request_form.get("sampleRate", 0)))
+ speaker_id = int(float(request_form.get("sSpeakId", 0)))
+ # http获得wav文件并转换
+ input_wav_path = io.BytesIO(wave_file.read())
+
+ # 模型推理
+ if raw_infer:
+ out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
+ tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample)
+ else:
+ out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path)
+ tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample)
+ # 返回音频
+ out_wav_path = io.BytesIO()
+ soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav")
+ out_wav_path.seek(0)
+ return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
+
+
+if __name__ == '__main__':
+ # 启用则为直接切片合成,False为交叉淡化方式
+ # vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音
+ # 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些
+ raw_infer = True
+ # 每个模型和config是唯一对应的
+ model_name = "logs/32k/G_174000-Copy1.pth"
+ config_name = "configs/config.json"
+ svc_model = Svc(model_name, config_name)
+ svc = RealTimeVC()
+ # 此处与vst插件对应,不建议更改
+ app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)
diff --git a/hubert/__init__.py b/hubert/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/hubert/__pycache__/__init__.cpython-38.pyc b/hubert/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1dd9b4d7e46b841a27f6c920fa64cbccaf62d237
Binary files /dev/null and b/hubert/__pycache__/__init__.cpython-38.pyc differ
diff --git a/hubert/__pycache__/hubert_model.cpython-38.pyc b/hubert/__pycache__/hubert_model.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..01661442e7af67aee70a9f5e83e1ba3f0cedec5e
Binary files /dev/null and b/hubert/__pycache__/hubert_model.cpython-38.pyc differ
diff --git a/hubert/checkpoint_best_legacy_500.pt b/hubert/checkpoint_best_legacy_500.pt
new file mode 100644
index 0000000000000000000000000000000000000000..9a2f13fb9c7047dff746e2d5d88c0d0a5aecf643
--- /dev/null
+++ b/hubert/checkpoint_best_legacy_500.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:60d936ec5a566776fc392e69ad8b630d14eb588111233fe313436e200a7b187b
+size 1330114945
diff --git a/hubert/hubert_model.py b/hubert/hubert_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..7fb642d89b07ca60792debab18e3454f52d8f357
--- /dev/null
+++ b/hubert/hubert_model.py
@@ -0,0 +1,222 @@
+import copy
+import random
+from typing import Optional, Tuple
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as t_func
+from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
+
+
+class Hubert(nn.Module):
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
+ super().__init__()
+ self._mask = mask
+ self.feature_extractor = FeatureExtractor()
+ self.feature_projection = FeatureProjection()
+ self.positional_embedding = PositionalConvEmbedding()
+ self.norm = nn.LayerNorm(768)
+ self.dropout = nn.Dropout(0.1)
+ self.encoder = TransformerEncoder(
+ nn.TransformerEncoderLayer(
+ 768, 12, 3072, activation="gelu", batch_first=True
+ ),
+ 12,
+ )
+ self.proj = nn.Linear(768, 256)
+
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
+
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ mask = None
+ if self.training and self._mask:
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
+ x[mask] = self.masked_spec_embed.to(x.dtype)
+ return x, mask
+
+ def encode(
+ self, x: torch.Tensor, layer: Optional[int] = None
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ x = self.feature_extractor(x)
+ x = self.feature_projection(x.transpose(1, 2))
+ x, mask = self.mask(x)
+ x = x + self.positional_embedding(x)
+ x = self.dropout(self.norm(x))
+ x = self.encoder(x, output_layer=layer)
+ return x, mask
+
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
+ logits = torch.cosine_similarity(
+ x.unsqueeze(2),
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
+ dim=-1,
+ )
+ return logits / 0.1
+
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ x, mask = self.encode(x)
+ x = self.proj(x)
+ logits = self.logits(x)
+ return logits, mask
+
+
+class HubertSoft(Hubert):
+ def __init__(self):
+ super().__init__()
+
+ @torch.inference_mode()
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
+ x, _ = self.encode(wav)
+ return self.proj(x)
+
+
+class FeatureExtractor(nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
+ self.norm0 = nn.GroupNorm(512, 512)
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = t_func.gelu(self.norm0(self.conv0(x)))
+ x = t_func.gelu(self.conv1(x))
+ x = t_func.gelu(self.conv2(x))
+ x = t_func.gelu(self.conv3(x))
+ x = t_func.gelu(self.conv4(x))
+ x = t_func.gelu(self.conv5(x))
+ x = t_func.gelu(self.conv6(x))
+ return x
+
+
+class FeatureProjection(nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.norm = nn.LayerNorm(512)
+ self.projection = nn.Linear(512, 768)
+ self.dropout = nn.Dropout(0.1)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = self.norm(x)
+ x = self.projection(x)
+ x = self.dropout(x)
+ return x
+
+
+class PositionalConvEmbedding(nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.conv = nn.Conv1d(
+ 768,
+ 768,
+ kernel_size=128,
+ padding=128 // 2,
+ groups=16,
+ )
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = self.conv(x.transpose(1, 2))
+ x = t_func.gelu(x[:, :, :-1])
+ return x.transpose(1, 2)
+
+
+class TransformerEncoder(nn.Module):
+ def __init__(
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
+ ) -> None:
+ super(TransformerEncoder, self).__init__()
+ self.layers = nn.ModuleList(
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
+ )
+ self.num_layers = num_layers
+
+ def forward(
+ self,
+ src: torch.Tensor,
+ mask: torch.Tensor = None,
+ src_key_padding_mask: torch.Tensor = None,
+ output_layer: Optional[int] = None,
+ ) -> torch.Tensor:
+ output = src
+ for layer in self.layers[:output_layer]:
+ output = layer(
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
+ )
+ return output
+
+
+def _compute_mask(
+ shape: Tuple[int, int],
+ mask_prob: float,
+ mask_length: int,
+ device: torch.device,
+ min_masks: int = 0,
+) -> torch.Tensor:
+ batch_size, sequence_length = shape
+
+ if mask_length < 1:
+ raise ValueError("`mask_length` has to be bigger than 0.")
+
+ if mask_length > sequence_length:
+ raise ValueError(
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
+ )
+
+ # compute number of masked spans in batch
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
+ num_masked_spans = max(num_masked_spans, min_masks)
+
+ # make sure num masked indices <= sequence_length
+ if num_masked_spans * mask_length > sequence_length:
+ num_masked_spans = sequence_length // mask_length
+
+ # SpecAugment mask to fill
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
+
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
+ uniform_dist = torch.ones(
+ (batch_size, sequence_length - (mask_length - 1)), device=device
+ )
+
+ # get random indices to mask
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
+
+ # expand masked indices to masked spans
+ mask_indices = (
+ mask_indices.unsqueeze(dim=-1)
+ .expand((batch_size, num_masked_spans, mask_length))
+ .reshape(batch_size, num_masked_spans * mask_length)
+ )
+ offsets = (
+ torch.arange(mask_length, device=device)[None, None, :]
+ .expand((batch_size, num_masked_spans, mask_length))
+ .reshape(batch_size, num_masked_spans * mask_length)
+ )
+ mask_idxs = mask_indices + offsets
+
+ # scatter indices to mask
+ mask = mask.scatter(1, mask_idxs, True)
+
+ return mask
+
+
+def hubert_soft(
+ path: str,
+) -> HubertSoft:
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
+ Args:
+ path (str): path of a pretrained model
+ """
+ hubert = HubertSoft()
+ checkpoint = torch.load(path)
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
+ hubert.load_state_dict(checkpoint)
+ hubert.eval()
+ return hubert
diff --git a/hubert/hubert_model_onnx.py b/hubert/hubert_model_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..d18f3c2a0fc29592a573a9780308d38f059640b9
--- /dev/null
+++ b/hubert/hubert_model_onnx.py
@@ -0,0 +1,217 @@
+import copy
+import random
+from typing import Optional, Tuple
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as t_func
+from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
+
+
+class Hubert(nn.Module):
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
+ super().__init__()
+ self._mask = mask
+ self.feature_extractor = FeatureExtractor()
+ self.feature_projection = FeatureProjection()
+ self.positional_embedding = PositionalConvEmbedding()
+ self.norm = nn.LayerNorm(768)
+ self.dropout = nn.Dropout(0.1)
+ self.encoder = TransformerEncoder(
+ nn.TransformerEncoderLayer(
+ 768, 12, 3072, activation="gelu", batch_first=True
+ ),
+ 12,
+ )
+ self.proj = nn.Linear(768, 256)
+
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
+
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ mask = None
+ if self.training and self._mask:
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
+ x[mask] = self.masked_spec_embed.to(x.dtype)
+ return x, mask
+
+ def encode(
+ self, x: torch.Tensor, layer: Optional[int] = None
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ x = self.feature_extractor(x)
+ x = self.feature_projection(x.transpose(1, 2))
+ x, mask = self.mask(x)
+ x = x + self.positional_embedding(x)
+ x = self.dropout(self.norm(x))
+ x = self.encoder(x, output_layer=layer)
+ return x, mask
+
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
+ logits = torch.cosine_similarity(
+ x.unsqueeze(2),
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
+ dim=-1,
+ )
+ return logits / 0.1
+
+
+class HubertSoft(Hubert):
+ def __init__(self):
+ super().__init__()
+
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
+ x, _ = self.encode(wav)
+ return self.proj(x)
+
+ def forward(self, x):
+ return self.units(x)
+
+class FeatureExtractor(nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
+ self.norm0 = nn.GroupNorm(512, 512)
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = t_func.gelu(self.norm0(self.conv0(x)))
+ x = t_func.gelu(self.conv1(x))
+ x = t_func.gelu(self.conv2(x))
+ x = t_func.gelu(self.conv3(x))
+ x = t_func.gelu(self.conv4(x))
+ x = t_func.gelu(self.conv5(x))
+ x = t_func.gelu(self.conv6(x))
+ return x
+
+
+class FeatureProjection(nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.norm = nn.LayerNorm(512)
+ self.projection = nn.Linear(512, 768)
+ self.dropout = nn.Dropout(0.1)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = self.norm(x)
+ x = self.projection(x)
+ x = self.dropout(x)
+ return x
+
+
+class PositionalConvEmbedding(nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.conv = nn.Conv1d(
+ 768,
+ 768,
+ kernel_size=128,
+ padding=128 // 2,
+ groups=16,
+ )
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = self.conv(x.transpose(1, 2))
+ x = t_func.gelu(x[:, :, :-1])
+ return x.transpose(1, 2)
+
+
+class TransformerEncoder(nn.Module):
+ def __init__(
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
+ ) -> None:
+ super(TransformerEncoder, self).__init__()
+ self.layers = nn.ModuleList(
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
+ )
+ self.num_layers = num_layers
+
+ def forward(
+ self,
+ src: torch.Tensor,
+ mask: torch.Tensor = None,
+ src_key_padding_mask: torch.Tensor = None,
+ output_layer: Optional[int] = None,
+ ) -> torch.Tensor:
+ output = src
+ for layer in self.layers[:output_layer]:
+ output = layer(
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
+ )
+ return output
+
+
+def _compute_mask(
+ shape: Tuple[int, int],
+ mask_prob: float,
+ mask_length: int,
+ device: torch.device,
+ min_masks: int = 0,
+) -> torch.Tensor:
+ batch_size, sequence_length = shape
+
+ if mask_length < 1:
+ raise ValueError("`mask_length` has to be bigger than 0.")
+
+ if mask_length > sequence_length:
+ raise ValueError(
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
+ )
+
+ # compute number of masked spans in batch
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
+ num_masked_spans = max(num_masked_spans, min_masks)
+
+ # make sure num masked indices <= sequence_length
+ if num_masked_spans * mask_length > sequence_length:
+ num_masked_spans = sequence_length // mask_length
+
+ # SpecAugment mask to fill
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
+
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
+ uniform_dist = torch.ones(
+ (batch_size, sequence_length - (mask_length - 1)), device=device
+ )
+
+ # get random indices to mask
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
+
+ # expand masked indices to masked spans
+ mask_indices = (
+ mask_indices.unsqueeze(dim=-1)
+ .expand((batch_size, num_masked_spans, mask_length))
+ .reshape(batch_size, num_masked_spans * mask_length)
+ )
+ offsets = (
+ torch.arange(mask_length, device=device)[None, None, :]
+ .expand((batch_size, num_masked_spans, mask_length))
+ .reshape(batch_size, num_masked_spans * mask_length)
+ )
+ mask_idxs = mask_indices + offsets
+
+ # scatter indices to mask
+ mask = mask.scatter(1, mask_idxs, True)
+
+ return mask
+
+
+def hubert_soft(
+ path: str,
+) -> HubertSoft:
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
+ Args:
+ path (str): path of a pretrained model
+ """
+ hubert = HubertSoft()
+ checkpoint = torch.load(path)
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
+ hubert.load_state_dict(checkpoint)
+ hubert.eval()
+ return hubert
diff --git a/inference/__init__.py b/inference/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/inference/__pycache__/__init__.cpython-38.pyc b/inference/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6d62913694f1faf53f0809db622262cc161bd795
Binary files /dev/null and b/inference/__pycache__/__init__.cpython-38.pyc differ
diff --git a/inference/__pycache__/infer_tool.cpython-38.pyc b/inference/__pycache__/infer_tool.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..31cbae362eaa138e309482868d00d90bc2d30076
Binary files /dev/null and b/inference/__pycache__/infer_tool.cpython-38.pyc differ
diff --git a/inference/__pycache__/slicer.cpython-38.pyc b/inference/__pycache__/slicer.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a210a5320eb6b886309d522fe2c22afd4e404a1e
Binary files /dev/null and b/inference/__pycache__/slicer.cpython-38.pyc differ
diff --git a/inference/chunks_temp.json b/inference/chunks_temp.json
new file mode 100644
index 0000000000000000000000000000000000000000..a286da339c100056bd2f7abc8fa49e05ac2fa68a
--- /dev/null
+++ b/inference/chunks_temp.json
@@ -0,0 +1 @@
+{"info": "temp_dict"}
\ No newline at end of file
diff --git a/inference/infer_tool.py b/inference/infer_tool.py
new file mode 100644
index 0000000000000000000000000000000000000000..dbaff46f4f6eb792808e0a0cbb37fb86cb8372e2
--- /dev/null
+++ b/inference/infer_tool.py
@@ -0,0 +1,233 @@
+import hashlib
+import io
+import json
+import logging
+import os
+import time
+from pathlib import Path
+from inference import slicer
+
+import librosa
+import numpy as np
+# import onnxruntime
+import parselmouth
+import soundfile
+import torch
+import torchaudio
+
+import cluster
+from hubert import hubert_model
+import utils
+from models import SynthesizerTrn
+
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+
+
+def read_temp(file_name):
+ if not os.path.exists(file_name):
+ with open(file_name, "w") as f:
+ f.write(json.dumps({"info": "temp_dict"}))
+ return {}
+ else:
+ try:
+ with open(file_name, "r") as f:
+ data = f.read()
+ data_dict = json.loads(data)
+ if os.path.getsize(file_name) > 50 * 1024 * 1024:
+ f_name = file_name.replace("\\", "/").split("/")[-1]
+ print(f"clean {f_name}")
+ for wav_hash in list(data_dict.keys()):
+ if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
+ del data_dict[wav_hash]
+ except Exception as e:
+ print(e)
+ print(f"{file_name} error,auto rebuild file")
+ data_dict = {"info": "temp_dict"}
+ return data_dict
+
+
+def write_temp(file_name, data):
+ with open(file_name, "w") as f:
+ f.write(json.dumps(data))
+
+
+def timeit(func):
+ def run(*args, **kwargs):
+ t = time.time()
+ res = func(*args, **kwargs)
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
+ return res
+
+ return run
+
+
+def format_wav(audio_path):
+ if Path(audio_path).suffix == '.wav':
+ return
+ raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
+ soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
+
+
+def get_end_file(dir_path, end):
+ file_lists = []
+ for root, dirs, files in os.walk(dir_path):
+ files = [f for f in files if f[0] != '.']
+ dirs[:] = [d for d in dirs if d[0] != '.']
+ for f_file in files:
+ if f_file.endswith(end):
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
+ return file_lists
+
+
+def get_md5(content):
+ return hashlib.new("md5", content).hexdigest()
+
+def fill_a_to_b(a, b):
+ if len(a) < len(b):
+ for _ in range(0, len(b) - len(a)):
+ a.append(a[0])
+
+def mkdir(paths: list):
+ for path in paths:
+ if not os.path.exists(path):
+ os.mkdir(path)
+
+
+class Svc(object):
+ def __init__(self, net_g_path, config_path,
+ device=None,
+ cluster_model_path="logs/44k/kmeans_10000.pt"):
+ self.net_g_path = net_g_path
+ if device is None:
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+ else:
+ self.dev = torch.device(device)
+ self.net_g_ms = None
+ self.hps_ms = utils.get_hparams_from_file(config_path)
+ self.target_sample = self.hps_ms.data.sampling_rate
+ self.hop_size = self.hps_ms.data.hop_length
+ self.spk2id = self.hps_ms.spk
+ # 加载hubert
+ self.hubert_model = utils.get_hubert_model().to(self.dev)
+ self.load_model()
+ if os.path.exists(cluster_model_path):
+ self.cluster_model = cluster.get_cluster_model(cluster_model_path)
+
+ def load_model(self):
+ # 获取模型配置
+ self.net_g_ms = SynthesizerTrn(
+ self.hps_ms.data.filter_length // 2 + 1,
+ self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
+ **self.hps_ms.model)
+ _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
+ if "half" in self.net_g_path and torch.cuda.is_available():
+ _ = self.net_g_ms.half().eval().to(self.dev)
+ else:
+ _ = self.net_g_ms.eval().to(self.dev)
+
+
+
+ def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker):
+
+ wav, sr = librosa.load(in_path, sr=self.target_sample)
+
+ f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
+ f0, uv = utils.interpolate_f0(f0)
+ f0 = torch.FloatTensor(f0)
+ uv = torch.FloatTensor(uv)
+ f0 = f0 * 2 ** (tran / 12)
+ f0 = f0.unsqueeze(0).to(self.dev)
+ uv = uv.unsqueeze(0).to(self.dev)
+
+ wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
+ wav16k = torch.from_numpy(wav16k).to(self.dev)
+ c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
+
+ if cluster_infer_ratio !=0:
+ cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.numpy().T, speaker).T
+ cluster_c = torch.FloatTensor(cluster_c)
+ c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
+
+ c = c.unsqueeze(0)
+ return c, f0, uv
+
+ def infer(self, speaker, tran, raw_path,
+ cluster_infer_ratio=0,
+ auto_predict_f0=False,
+ noice_scale=0.4):
+ speaker_id = self.spk2id[speaker]
+ sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
+ c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker)
+ if "half" in self.net_g_path and torch.cuda.is_available():
+ c = c.half()
+ with torch.no_grad():
+ start = time.time()
+ audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float()
+ use_time = time.time() - start
+ print("vits use time:{}".format(use_time))
+ return audio, audio.shape[-1]
+
+ def slice_inference(self,raw_audio_path, spk, tran, slice_db,cluster_infer_ratio, auto_predict_f0,noice_scale, pad_seconds=0.5):
+ wav_path = raw_audio_path
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
+
+ audio = []
+ for (slice_tag, data) in audio_data:
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
+ # padd
+ pad_len = int(audio_sr * pad_seconds)
+ data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
+ length = int(np.ceil(len(data) / audio_sr * self.target_sample))
+ raw_path = io.BytesIO()
+ soundfile.write(raw_path, data, audio_sr, format="wav")
+ raw_path.seek(0)
+ if slice_tag:
+ print('jump empty segment')
+ _audio = np.zeros(length)
+ else:
+ out_audio, out_sr = self.infer(spk, tran, raw_path,
+ cluster_infer_ratio=cluster_infer_ratio,
+ auto_predict_f0=auto_predict_f0,
+ noice_scale=noice_scale
+ )
+ _audio = out_audio.cpu().numpy()
+
+ pad_len = int(self.target_sample * pad_seconds)
+ _audio = _audio[pad_len:-pad_len]
+ audio.extend(list(_audio))
+ return np.array(audio)
+
+
+class RealTimeVC:
+ def __init__(self):
+ self.last_chunk = None
+ self.last_o = None
+ self.chunk_len = 16000 # 区块长度
+ self.pre_len = 3840 # 交叉淡化长度,640的倍数
+
+ """输入输出都是1维numpy 音频波形数组"""
+
+ def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path):
+ import maad
+ audio, sr = torchaudio.load(input_wav_path)
+ audio = audio.cpu().numpy()[0]
+ temp_wav = io.BytesIO()
+ if self.last_chunk is None:
+ input_wav_path.seek(0)
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
+ audio = audio.cpu().numpy()
+ self.last_chunk = audio[-self.pre_len:]
+ self.last_o = audio
+ return audio[-self.chunk_len:]
+ else:
+ audio = np.concatenate([self.last_chunk, audio])
+ soundfile.write(temp_wav, audio, sr, format="wav")
+ temp_wav.seek(0)
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav)
+ audio = audio.cpu().numpy()
+ ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
+ self.last_chunk = audio[-self.pre_len:]
+ self.last_o = audio
+ return ret[self.chunk_len:2 * self.chunk_len]
diff --git a/inference/infer_tool_grad.py b/inference/infer_tool_grad.py
new file mode 100644
index 0000000000000000000000000000000000000000..b75af49c08e2e724839828bc419792ed580809bb
--- /dev/null
+++ b/inference/infer_tool_grad.py
@@ -0,0 +1,160 @@
+import hashlib
+import json
+import logging
+import os
+import time
+from pathlib import Path
+import io
+import librosa
+import maad
+import numpy as np
+from inference import slicer
+import parselmouth
+import soundfile
+import torch
+import torchaudio
+
+from hubert import hubert_model
+import utils
+from models import SynthesizerTrn
+logging.getLogger('numba').setLevel(logging.WARNING)
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+
+def resize2d_f0(x, target_len):
+ source = np.array(x)
+ source[source < 0.001] = np.nan
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
+ source)
+ res = np.nan_to_num(target)
+ return res
+
+def get_f0(x, p_len,f0_up_key=0):
+
+ time_step = 160 / 16000 * 1000
+ f0_min = 50
+ f0_max = 1100
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+
+ f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
+ time_step=time_step / 1000, voicing_threshold=0.6,
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
+
+ pad_size=(p_len - len(f0) + 1) // 2
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
+
+ f0 *= pow(2, f0_up_key / 12)
+ f0_mel = 1127 * np.log(1 + f0 / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > 255] = 255
+ f0_coarse = np.rint(f0_mel).astype(np.int)
+ return f0_coarse, f0
+
+def clean_pitch(input_pitch):
+ num_nan = np.sum(input_pitch == 1)
+ if num_nan / len(input_pitch) > 0.9:
+ input_pitch[input_pitch != 1] = 1
+ return input_pitch
+
+
+def plt_pitch(input_pitch):
+ input_pitch = input_pitch.astype(float)
+ input_pitch[input_pitch == 1] = np.nan
+ return input_pitch
+
+
+def f0_to_pitch(ff):
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
+ return f0_pitch
+
+
+def fill_a_to_b(a, b):
+ if len(a) < len(b):
+ for _ in range(0, len(b) - len(a)):
+ a.append(a[0])
+
+
+def mkdir(paths: list):
+ for path in paths:
+ if not os.path.exists(path):
+ os.mkdir(path)
+
+
+class VitsSvc(object):
+ def __init__(self):
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+ self.SVCVITS = None
+ self.hps = None
+ self.speakers = None
+ self.hubert_soft = utils.get_hubert_model()
+
+ def set_device(self, device):
+ self.device = torch.device(device)
+ self.hubert_soft.to(self.device)
+ if self.SVCVITS != None:
+ self.SVCVITS.to(self.device)
+
+ def loadCheckpoint(self, path):
+ self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
+ self.SVCVITS = SynthesizerTrn(
+ self.hps.data.filter_length // 2 + 1,
+ self.hps.train.segment_size // self.hps.data.hop_length,
+ **self.hps.model)
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.SVCVITS, None)
+ _ = self.SVCVITS.eval().to(self.device)
+ self.speakers = self.hps.spk
+
+ def get_units(self, source, sr):
+ source = source.unsqueeze(0).to(self.device)
+ with torch.inference_mode():
+ units = self.hubert_soft.units(source)
+ return units
+
+
+ def get_unit_pitch(self, in_path, tran):
+ source, sr = torchaudio.load(in_path)
+ source = torchaudio.functional.resample(source, sr, 16000)
+ if len(source.shape) == 2 and source.shape[1] >= 2:
+ source = torch.mean(source, dim=0).unsqueeze(0)
+ soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
+ f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
+ return soft, f0
+
+ def infer(self, speaker_id, tran, raw_path):
+ speaker_id = self.speakers[speaker_id]
+ sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
+ soft, pitch = self.get_unit_pitch(raw_path, tran)
+ f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
+ stn_tst = torch.FloatTensor(soft)
+ with torch.no_grad():
+ x_tst = stn_tst.unsqueeze(0).to(self.device)
+ x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
+ audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
+ return audio, audio.shape[-1]
+
+ def inference(self,srcaudio,chara,tran,slice_db):
+ sampling_rate, audio = srcaudio
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio.transpose(1, 0))
+ if sampling_rate != 16000:
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
+ soundfile.write("tmpwav.wav", audio, 16000, format="wav")
+ chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
+ audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
+ audio = []
+ for (slice_tag, data) in audio_data:
+ length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
+ raw_path = io.BytesIO()
+ soundfile.write(raw_path, data, audio_sr, format="wav")
+ raw_path.seek(0)
+ if slice_tag:
+ _audio = np.zeros(length)
+ else:
+ out_audio, out_sr = self.infer(chara, tran, raw_path)
+ _audio = out_audio.cpu().numpy()
+ audio.extend(list(_audio))
+ audio = (np.array(audio) * 32768.0).astype('int16')
+ return (self.hps.data.sampling_rate,audio)
diff --git a/inference/slicer.py b/inference/slicer.py
new file mode 100644
index 0000000000000000000000000000000000000000..b05840bcf6bdced0b6e2adbecb1a1dd5b3dee462
--- /dev/null
+++ b/inference/slicer.py
@@ -0,0 +1,142 @@
+import librosa
+import torch
+import torchaudio
+
+
+class Slicer:
+ def __init__(self,
+ sr: int,
+ threshold: float = -40.,
+ min_length: int = 5000,
+ min_interval: int = 300,
+ hop_size: int = 20,
+ max_sil_kept: int = 5000):
+ if not min_length >= min_interval >= hop_size:
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
+ if not max_sil_kept >= hop_size:
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
+ min_interval = sr * min_interval / 1000
+ self.threshold = 10 ** (threshold / 20.)
+ self.hop_size = round(sr * hop_size / 1000)
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
+ self.min_interval = round(min_interval / self.hop_size)
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
+
+ def _apply_slice(self, waveform, begin, end):
+ if len(waveform.shape) > 1:
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
+ else:
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
+
+ # @timeit
+ def slice(self, waveform):
+ if len(waveform.shape) > 1:
+ samples = librosa.to_mono(waveform)
+ else:
+ samples = waveform
+ if samples.shape[0] <= self.min_length:
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
+ rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
+ sil_tags = []
+ silence_start = None
+ clip_start = 0
+ for i, rms in enumerate(rms_list):
+ # Keep looping while frame is silent.
+ if rms < self.threshold:
+ # Record start of silent frames.
+ if silence_start is None:
+ silence_start = i
+ continue
+ # Keep looping while frame is not silent and silence start has not been recorded.
+ if silence_start is None:
+ continue
+ # Clear recorded silence start if interval is not enough or clip is too short
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
+ if not is_leading_silence and not need_slice_middle:
+ silence_start = None
+ continue
+ # Need slicing. Record the range of silent frames to be removed.
+ if i - silence_start <= self.max_sil_kept:
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
+ if silence_start == 0:
+ sil_tags.append((0, pos))
+ else:
+ sil_tags.append((pos, pos))
+ clip_start = pos
+ elif i - silence_start <= self.max_sil_kept * 2:
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
+ pos += i - self.max_sil_kept
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
+ if silence_start == 0:
+ sil_tags.append((0, pos_r))
+ clip_start = pos_r
+ else:
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
+ clip_start = max(pos_r, pos)
+ else:
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
+ if silence_start == 0:
+ sil_tags.append((0, pos_r))
+ else:
+ sil_tags.append((pos_l, pos_r))
+ clip_start = pos_r
+ silence_start = None
+ # Deal with trailing silence.
+ total_frames = rms_list.shape[0]
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
+ sil_tags.append((pos, total_frames + 1))
+ # Apply and return slices.
+ if len(sil_tags) == 0:
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
+ else:
+ chunks = []
+ # 第一段静音并非从头开始,补上有声片段
+ if sil_tags[0][0]:
+ chunks.append(
+ {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
+ for i in range(0, len(sil_tags)):
+ # 标识有声片段(跳过第一段)
+ if i:
+ chunks.append({"slice": False,
+ "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
+ # 标识所有静音片段
+ chunks.append({"slice": True,
+ "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
+ # 最后一段静音并非结尾,补上结尾片段
+ if sil_tags[-1][1] * self.hop_size < len(waveform):
+ chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
+ chunk_dict = {}
+ for i in range(len(chunks)):
+ chunk_dict[str(i)] = chunks[i]
+ return chunk_dict
+
+
+def cut(audio_path, db_thresh=-30, min_len=5000):
+ audio, sr = librosa.load(audio_path, sr=None)
+ slicer = Slicer(
+ sr=sr,
+ threshold=db_thresh,
+ min_length=min_len
+ )
+ chunks = slicer.slice(audio)
+ return chunks
+
+
+def chunks2audio(audio_path, chunks):
+ chunks = dict(chunks)
+ audio, sr = torchaudio.load(audio_path)
+ if len(audio.shape) == 2 and audio.shape[1] >= 2:
+ audio = torch.mean(audio, dim=0).unsqueeze(0)
+ audio = audio.cpu().numpy()[0]
+ result = []
+ for k, v in chunks.items():
+ tag = v["split_time"].split(",")
+ if tag[0] != tag[1]:
+ result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
+ return result, sr
diff --git a/inference_main.py b/inference_main.py
new file mode 100644
index 0000000000000000000000000000000000000000..80a470ea9146f1f75e785411dd5d3b6fade64b70
--- /dev/null
+++ b/inference_main.py
@@ -0,0 +1,100 @@
+import io
+import logging
+import time
+from pathlib import Path
+
+import librosa
+import matplotlib.pyplot as plt
+import numpy as np
+import soundfile
+
+from inference import infer_tool
+from inference import slicer
+from inference.infer_tool import Svc
+
+logging.getLogger('numba').setLevel(logging.WARNING)
+chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
+
+
+
+def main():
+ import argparse
+
+ parser = argparse.ArgumentParser(description='sovits4 inference')
+
+ # 一定要设置的部分
+ parser.add_argument('-m', '--model_path', type=str, default="/Volumes/Extend/下载/G_20800.pth", help='模型路径')
+ parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
+ parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src"], help='wav文件名列表,放在raw文件夹下')
+ parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
+ parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nyaru'], help='合成目标说话人名称')
+
+ # 可选项部分
+ parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,
+ help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
+ parser.add_argument('-cm', '--cluster_model_path', type=str, default="/Volumes/Extend/下载/so-vits-svc-4.0/logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
+ parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=1, help='聚类方案占比,范围0-1,若没有训练聚类模型则填0即可')
+
+ # 不用动的部分
+ parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
+ parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
+ parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
+ parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
+ parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
+
+ args = parser.parse_args()
+
+ svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path)
+ infer_tool.mkdir(["raw", "results"])
+ clean_names = args.clean_names
+ trans = args.trans
+ spk_list = args.spk_list
+ slice_db = args.slice_db
+ wav_format = args.wav_format
+ auto_predict_f0 = args.auto_predict_f0
+ cluster_infer_ratio = args.cluster_infer_ratio
+ noice_scale = args.noice_scale
+ pad_seconds = args.pad_seconds
+
+ infer_tool.fill_a_to_b(trans, clean_names)
+ for clean_name, tran in zip(clean_names, trans):
+ raw_audio_path = f"raw/{clean_name}"
+ if "." not in raw_audio_path:
+ raw_audio_path += ".wav"
+ infer_tool.format_wav(raw_audio_path)
+ wav_path = Path(raw_audio_path).with_suffix('.wav')
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
+
+ for spk in spk_list:
+ audio = []
+ for (slice_tag, data) in audio_data:
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
+ # padd
+ pad_len = int(audio_sr * pad_seconds)
+ data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
+ length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
+ raw_path = io.BytesIO()
+ soundfile.write(raw_path, data, audio_sr, format="wav")
+ raw_path.seek(0)
+ if slice_tag:
+ print('jump empty segment')
+ _audio = np.zeros(length)
+ else:
+ out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
+ cluster_infer_ratio=cluster_infer_ratio,
+ auto_predict_f0=auto_predict_f0,
+ noice_scale=noice_scale
+ )
+ _audio = out_audio.cpu().numpy()
+
+ pad_len = int(svc_model.target_sample * pad_seconds)
+ _audio = _audio[pad_len:-pad_len]
+ audio.extend(list(_audio))
+ key = "auto" if auto_predict_f0 else f"{tran}key"
+ cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
+ res_path = f'./results/old——{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
+ soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
+
+if __name__ == '__main__':
+ main()
diff --git a/models.py b/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..13278d680493970f5a670cf3fc955a6e9b7ab1d5
--- /dev/null
+++ b/models.py
@@ -0,0 +1,420 @@
+import copy
+import math
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+import modules.attentions as attentions
+import modules.commons as commons
+import modules.modules as modules
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+
+import utils
+from modules.commons import init_weights, get_padding
+from vdecoder.hifigan.models import Generator
+from utils import f0_to_coarse
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+
+class Encoder(nn.Module):
+ def __init__(self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ # print(x.shape,x_lengths.shape)
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+
+class TextEncoder(nn.Module):
+ def __init__(self,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ n_layers,
+ gin_channels=0,
+ filter_channels=None,
+ n_heads=None,
+ p_dropout=None):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+ self.f0_emb = nn.Embedding(256, hidden_channels)
+
+ self.enc_ = attentions.Encoder(
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout)
+
+ def forward(self, x, x_mask, f0=None, noice_scale=1):
+ x = x + self.f0_emb(f0).transpose(1,2)
+ x = self.enc_(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask
+
+ return z, m, logs, x_mask
+
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
+ ])
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ])
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2,3,5,7,11]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class SpeakerEncoder(torch.nn.Module):
+ def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
+ super(SpeakerEncoder, self).__init__()
+ self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
+ self.relu = nn.ReLU()
+
+ def forward(self, mels):
+ self.lstm.flatten_parameters()
+ _, (hidden, _) = self.lstm(mels)
+ embeds_raw = self.relu(self.linear(hidden[-1]))
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
+
+ def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
+ mel_slices = []
+ for i in range(0, total_frames-partial_frames, partial_hop):
+ mel_range = torch.arange(i, i+partial_frames)
+ mel_slices.append(mel_range)
+
+ return mel_slices
+
+ def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
+ mel_len = mel.size(1)
+ last_mel = mel[:,-partial_frames:]
+
+ if mel_len > partial_frames:
+ mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
+ mels = list(mel[:,s] for s in mel_slices)
+ mels.append(last_mel)
+ mels = torch.stack(tuple(mels), 0).squeeze(1)
+
+ with torch.no_grad():
+ partial_embeds = self(mels)
+ embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
+ #embed = embed / torch.linalg.norm(embed, 2)
+ else:
+ with torch.no_grad():
+ embed = self(last_mel)
+
+ return embed
+
+class F0Decoder(nn.Module):
+ def __init__(self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ spk_channels=0):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.spk_channels = spk_channels
+
+ self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
+ self.decoder = attentions.FFT(
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout)
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+ self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
+
+ def forward(self, x, norm_f0, x_mask, spk_emb=None):
+ x = torch.detach(x)
+ if (spk_emb is not None):
+ x = x + self.cond(spk_emb)
+ x += self.f0_prenet(norm_f0)
+ x = self.prenet(x) * x_mask
+ x = self.decoder(x * x_mask, x_mask)
+ x = self.proj(x) * x_mask
+ return x
+
+
+class SynthesizerTrn(nn.Module):
+ """
+ Synthesizer for Training
+ """
+
+ def __init__(self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ ssl_dim,
+ n_speakers,
+ sampling_rate=44100,
+ **kwargs):
+
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ self.ssl_dim = ssl_dim
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
+
+ self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
+
+ self.enc_p = TextEncoder(
+ inter_channels,
+ hidden_channels,
+ filter_channels=filter_channels,
+ n_heads=n_heads,
+ n_layers=n_layers,
+ kernel_size=kernel_size,
+ p_dropout=p_dropout
+ )
+ hps = {
+ "sampling_rate": sampling_rate,
+ "inter_channels": inter_channels,
+ "resblock": resblock,
+ "resblock_kernel_sizes": resblock_kernel_sizes,
+ "resblock_dilation_sizes": resblock_dilation_sizes,
+ "upsample_rates": upsample_rates,
+ "upsample_initial_channel": upsample_initial_channel,
+ "upsample_kernel_sizes": upsample_kernel_sizes,
+ "gin_channels": gin_channels,
+ }
+ self.dec = Generator(h=hps)
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
+ self.f0_decoder = F0Decoder(
+ 1,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ spk_channels=gin_channels
+ )
+ self.emb_uv = nn.Embedding(2, hidden_channels)
+
+ def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
+ g = self.emb_g(g).transpose(1,2)
+ # ssl prenet
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
+
+ # f0 predict
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
+
+ # encoder
+ z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
+ z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
+
+ # flow
+ z_p = self.flow(z, spec_mask, g=g)
+ z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
+
+ # nsf decoder
+ o = self.dec(z_slice, g=g, f0=pitch_slice)
+
+ return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
+
+ def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
+ g = self.emb_g(g).transpose(1,2)
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
+
+ if predict_f0:
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
+ f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
+
+ z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
+ o = self.dec(z * c_mask, g=g, f0=f0)
+ return o
diff --git a/models/tannhauser/config.json b/models/tannhauser/config.json
new file mode 100644
index 0000000000000000000000000000000000000000..99de50f4e78bf90118d5b8f3589e846150598477
--- /dev/null
+++ b/models/tannhauser/config.json
@@ -0,0 +1,93 @@
+{
+ "train": {
+ "log_interval": 200,
+ "eval_interval": 800,
+ "seed": 1234,
+ "epochs": 10000,
+ "learning_rate": 0.0001,
+ "betas": [
+ 0.8,
+ 0.99
+ ],
+ "eps": 1e-09,
+ "batch_size": 32,
+ "fp16_run": false,
+ "lr_decay": 0.999875,
+ "segment_size": 10240,
+ "init_lr_ratio": 1,
+ "warmup_epochs": 0,
+ "c_mel": 45,
+ "c_kl": 1.0,
+ "use_sr": true,
+ "max_speclen": 512,
+ "port": "8001",
+ "keep_ckpts": 99
+ },
+ "data": {
+ "training_files": "filelists/train.txt",
+ "validation_files": "filelists/val.txt",
+ "max_wav_value": 32768.0,
+ "sampling_rate": 44100,
+ "filter_length": 2048,
+ "hop_length": 512,
+ "win_length": 2048,
+ "n_mel_channels": 80,
+ "mel_fmin": 0.0,
+ "mel_fmax": 22050
+ },
+ "model": {
+ "inter_channels": 192,
+ "hidden_channels": 192,
+ "filter_channels": 768,
+ "n_heads": 2,
+ "n_layers": 6,
+ "kernel_size": 3,
+ "p_dropout": 0.1,
+ "resblock": "1",
+ "resblock_kernel_sizes": [
+ 3,
+ 7,
+ 11
+ ],
+ "resblock_dilation_sizes": [
+ [
+ 1,
+ 3,
+ 5
+ ],
+ [
+ 1,
+ 3,
+ 5
+ ],
+ [
+ 1,
+ 3,
+ 5
+ ]
+ ],
+ "upsample_rates": [
+ 8,
+ 8,
+ 2,
+ 2,
+ 2
+ ],
+ "upsample_initial_channel": 512,
+ "upsample_kernel_sizes": [
+ 16,
+ 16,
+ 4,
+ 4,
+ 4
+ ],
+ "n_layers_q": 3,
+ "use_spectral_norm": false,
+ "gin_channels": 256,
+ "ssl_dim": 256,
+ "n_speakers": 200
+ },
+ "spk": {
+ "tannhauser": 0
+ }
+}
\ No newline at end of file
diff --git a/models/tannhauser/tannhauser.pth b/models/tannhauser/tannhauser.pth
new file mode 100644
index 0000000000000000000000000000000000000000..b237d832ff38c8f6110e045f256053a9a57cb651
--- /dev/null
+++ b/models/tannhauser/tannhauser.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a39d57f9e5ae1eba070eb782df6355699ff93f680b075f99c45613ad590035ef
+size 180883747
diff --git a/models/teio/config.json b/models/teio/config.json
new file mode 100644
index 0000000000000000000000000000000000000000..70194683dc2322149042829c53fcbf250cfe45de
--- /dev/null
+++ b/models/teio/config.json
@@ -0,0 +1,93 @@
+{
+ "train": {
+ "log_interval": 200,
+ "eval_interval": 800,
+ "seed": 1234,
+ "epochs": 10000,
+ "learning_rate": 0.0001,
+ "betas": [
+ 0.8,
+ 0.99
+ ],
+ "eps": 1e-09,
+ "batch_size": 32,
+ "fp16_run": false,
+ "lr_decay": 0.999875,
+ "segment_size": 10240,
+ "init_lr_ratio": 1,
+ "warmup_epochs": 0,
+ "c_mel": 45,
+ "c_kl": 1.0,
+ "use_sr": true,
+ "max_speclen": 512,
+ "port": "8001",
+ "keep_ckpts": 99
+ },
+ "data": {
+ "training_files": "filelists/train.txt",
+ "validation_files": "filelists/val.txt",
+ "max_wav_value": 32768.0,
+ "sampling_rate": 44100,
+ "filter_length": 2048,
+ "hop_length": 512,
+ "win_length": 2048,
+ "n_mel_channels": 80,
+ "mel_fmin": 0.0,
+ "mel_fmax": 22050
+ },
+ "model": {
+ "inter_channels": 192,
+ "hidden_channels": 192,
+ "filter_channels": 768,
+ "n_heads": 2,
+ "n_layers": 6,
+ "kernel_size": 3,
+ "p_dropout": 0.1,
+ "resblock": "1",
+ "resblock_kernel_sizes": [
+ 3,
+ 7,
+ 11
+ ],
+ "resblock_dilation_sizes": [
+ [
+ 1,
+ 3,
+ 5
+ ],
+ [
+ 1,
+ 3,
+ 5
+ ],
+ [
+ 1,
+ 3,
+ 5
+ ]
+ ],
+ "upsample_rates": [
+ 8,
+ 8,
+ 2,
+ 2,
+ 2
+ ],
+ "upsample_initial_channel": 512,
+ "upsample_kernel_sizes": [
+ 16,
+ 16,
+ 4,
+ 4,
+ 4
+ ],
+ "n_layers_q": 3,
+ "use_spectral_norm": false,
+ "gin_channels": 256,
+ "ssl_dim": 256,
+ "n_speakers": 200
+ },
+ "spk": {
+ "teio": 0
+ }
+}
\ No newline at end of file
diff --git a/models/teio/teio.pth b/models/teio/teio.pth
new file mode 100644
index 0000000000000000000000000000000000000000..9fc66c3874e146206c95ceb229070f07020f2764
--- /dev/null
+++ b/models/teio/teio.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:305cbd8bc9bc468f2744d0fc425d1c7363a6232140728d403e90486dc2921160
+size 180883747
diff --git a/modules/__init__.py b/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/modules/__pycache__/__init__.cpython-38.pyc b/modules/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5c60bc39e3640fd004682af26406e37d6fd30f31
Binary files /dev/null and b/modules/__pycache__/__init__.cpython-38.pyc differ
diff --git a/modules/__pycache__/attentions.cpython-38.pyc b/modules/__pycache__/attentions.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..965015f9d44d04e1d0dd183d074bb73a3d698d87
Binary files /dev/null and b/modules/__pycache__/attentions.cpython-38.pyc differ
diff --git a/modules/__pycache__/commons.cpython-38.pyc b/modules/__pycache__/commons.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5a3b8d85ccad86c0fe625d04a6a893fc67d927f6
Binary files /dev/null and b/modules/__pycache__/commons.cpython-38.pyc differ
diff --git a/modules/__pycache__/modules.cpython-38.pyc b/modules/__pycache__/modules.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..10f0ba2d0b0ea4e4892ff7334b651f9d84929373
Binary files /dev/null and b/modules/__pycache__/modules.cpython-38.pyc differ
diff --git a/modules/attentions.py b/modules/attentions.py
new file mode 100644
index 0000000000000000000000000000000000000000..f9c11ca4a3acb86bf1abc04d9dcfa82a4ed4061f
--- /dev/null
+++ b/modules/attentions.py
@@ -0,0 +1,349 @@
+import copy
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+import modules.commons as commons
+import modules.modules as modules
+from modules.modules import LayerNorm
+
+
+class FFT(nn.Module):
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
+ proximal_bias=False, proximal_init=True, **kwargs):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+
+ self.drop = nn.Dropout(p_dropout)
+ self.self_attn_layers = nn.ModuleList()
+ self.norm_layers_0 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.self_attn_layers.append(
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
+ proximal_init=proximal_init))
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask):
+ """
+ x: decoder input
+ h: encoder output
+ """
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_0[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class Encoder(nn.Module):
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+
+ self.drop = nn.Dropout(p_dropout)
+ self.attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask):
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.attn_layers[i](x, x, attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class Decoder(nn.Module):
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+
+ self.drop = nn.Dropout(p_dropout)
+ self.self_attn_layers = nn.ModuleList()
+ self.norm_layers_0 = nn.ModuleList()
+ self.encdec_attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask, h, h_mask):
+ """
+ x: decoder input
+ h: encoder output
+ """
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_0[i](x + y)
+
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class MultiHeadAttention(nn.Module):
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
+ super().__init__()
+ assert channels % n_heads == 0
+
+ self.channels = channels
+ self.out_channels = out_channels
+ self.n_heads = n_heads
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+ self.heads_share = heads_share
+ self.block_length = block_length
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+ self.attn = None
+
+ self.k_channels = channels // n_heads
+ self.conv_q = nn.Conv1d(channels, channels, 1)
+ self.conv_k = nn.Conv1d(channels, channels, 1)
+ self.conv_v = nn.Conv1d(channels, channels, 1)
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
+ self.drop = nn.Dropout(p_dropout)
+
+ if window_size is not None:
+ n_heads_rel = 1 if heads_share else n_heads
+ rel_stddev = self.k_channels**-0.5
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
+
+ nn.init.xavier_uniform_(self.conv_q.weight)
+ nn.init.xavier_uniform_(self.conv_k.weight)
+ nn.init.xavier_uniform_(self.conv_v.weight)
+ if proximal_init:
+ with torch.no_grad():
+ self.conv_k.weight.copy_(self.conv_q.weight)
+ self.conv_k.bias.copy_(self.conv_q.bias)
+
+ def forward(self, x, c, attn_mask=None):
+ q = self.conv_q(x)
+ k = self.conv_k(c)
+ v = self.conv_v(c)
+
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
+
+ x = self.conv_o(x)
+ return x
+
+ def attention(self, query, key, value, mask=None):
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
+ b, d, t_s, t_t = (*key.size(), query.size(2))
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
+ if self.window_size is not None:
+ assert t_s == t_t, "Relative attention is only available for self-attention."
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
+ scores = scores + scores_local
+ if self.proximal_bias:
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
+ if mask is not None:
+ scores = scores.masked_fill(mask == 0, -1e4)
+ if self.block_length is not None:
+ assert t_s == t_t, "Local attention is only available for self-attention."
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
+ scores = scores.masked_fill(block_mask == 0, -1e4)
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
+ p_attn = self.drop(p_attn)
+ output = torch.matmul(p_attn, value)
+ if self.window_size is not None:
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
+ return output, p_attn
+
+ def _matmul_with_relative_values(self, x, y):
+ """
+ x: [b, h, l, m]
+ y: [h or 1, m, d]
+ ret: [b, h, l, d]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0))
+ return ret
+
+ def _matmul_with_relative_keys(self, x, y):
+ """
+ x: [b, h, l, d]
+ y: [h or 1, m, d]
+ ret: [b, h, l, m]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
+ return ret
+
+ def _get_relative_embeddings(self, relative_embeddings, length):
+ max_relative_position = 2 * self.window_size + 1
+ # Pad first before slice to avoid using cond ops.
+ pad_length = max(length - (self.window_size + 1), 0)
+ slice_start_position = max((self.window_size + 1) - length, 0)
+ slice_end_position = slice_start_position + 2 * length - 1
+ if pad_length > 0:
+ padded_relative_embeddings = F.pad(
+ relative_embeddings,
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
+ else:
+ padded_relative_embeddings = relative_embeddings
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
+ return used_relative_embeddings
+
+ def _relative_position_to_absolute_position(self, x):
+ """
+ x: [b, h, l, 2*l-1]
+ ret: [b, h, l, l]
+ """
+ batch, heads, length, _ = x.size()
+ # Concat columns of pad to shift from relative to absolute indexing.
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
+
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
+ x_flat = x.view([batch, heads, length * 2 * length])
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
+
+ # Reshape and slice out the padded elements.
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
+ return x_final
+
+ def _absolute_position_to_relative_position(self, x):
+ """
+ x: [b, h, l, l]
+ ret: [b, h, l, 2*l-1]
+ """
+ batch, heads, length, _ = x.size()
+ # padd along column
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
+ # add 0's in the beginning that will skew the elements after reshape
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
+ return x_final
+
+ def _attention_bias_proximal(self, length):
+ """Bias for self-attention to encourage attention to close positions.
+ Args:
+ length: an integer scalar.
+ Returns:
+ a Tensor with shape [1, 1, length, length]
+ """
+ r = torch.arange(length, dtype=torch.float32)
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
+
+
+class FFN(nn.Module):
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.activation = activation
+ self.causal = causal
+
+ if causal:
+ self.padding = self._causal_padding
+ else:
+ self.padding = self._same_padding
+
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
+ self.drop = nn.Dropout(p_dropout)
+
+ def forward(self, x, x_mask):
+ x = self.conv_1(self.padding(x * x_mask))
+ if self.activation == "gelu":
+ x = x * torch.sigmoid(1.702 * x)
+ else:
+ x = torch.relu(x)
+ x = self.drop(x)
+ x = self.conv_2(self.padding(x * x_mask))
+ return x * x_mask
+
+ def _causal_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = self.kernel_size - 1
+ pad_r = 0
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
+
+ def _same_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = (self.kernel_size - 1) // 2
+ pad_r = self.kernel_size // 2
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
diff --git a/modules/commons.py b/modules/commons.py
new file mode 100644
index 0000000000000000000000000000000000000000..074888006392e956ce204d8368362dbb2cd4e304
--- /dev/null
+++ b/modules/commons.py
@@ -0,0 +1,188 @@
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+def slice_pitch_segments(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, idx_str:idx_end]
+ return ret
+
+def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size + 1
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
+ return ret, ret_pitch, ids_str
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size*dilation - dilation)/2)
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def intersperse(lst, item):
+ result = [item] * (len(lst) * 2 + 1)
+ result[1::2] = lst
+ return result
+
+
+def kl_divergence(m_p, logs_p, m_q, logs_q):
+ """KL(P||Q)"""
+ kl = (logs_q - logs_p) - 0.5
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
+ return kl
+
+
+def rand_gumbel(shape):
+ """Sample from the Gumbel distribution, protect from overflows."""
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
+ return -torch.log(-torch.log(uniform_samples))
+
+
+def rand_gumbel_like(x):
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
+ return g
+
+
+def slice_segments(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, :, idx_str:idx_end]
+ return ret
+
+
+def rand_slice_segments(x, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size + 1
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ return ret, ids_str
+
+
+def rand_spec_segments(x, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ return ret, ids_str
+
+
+def get_timing_signal_1d(
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
+ position = torch.arange(length, dtype=torch.float)
+ num_timescales = channels // 2
+ log_timescale_increment = (
+ math.log(float(max_timescale) / float(min_timescale)) /
+ (num_timescales - 1))
+ inv_timescales = min_timescale * torch.exp(
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
+ signal = signal.view(1, channels, length)
+ return signal
+
+
+def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return x + signal.to(dtype=x.dtype, device=x.device)
+
+
+def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
+
+
+def subsequent_mask(length):
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
+ return mask
+
+
+@torch.jit.script
+def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
+ n_channels_int = n_channels[0]
+ in_act = input_a + input_b
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
+ acts = t_act * s_act
+ return acts
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def shift_1d(x):
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
+ return x
+
+
+def sequence_mask(length, max_length=None):
+ if max_length is None:
+ max_length = length.max()
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
+ return x.unsqueeze(0) < length.unsqueeze(1)
+
+
+def generate_path(duration, mask):
+ """
+ duration: [b, 1, t_x]
+ mask: [b, 1, t_y, t_x]
+ """
+ device = duration.device
+
+ b, _, t_y, t_x = mask.shape
+ cum_duration = torch.cumsum(duration, -1)
+
+ cum_duration_flat = cum_duration.view(b * t_x)
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
+ path = path.view(b, t_x, t_y)
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
+ path = path.unsqueeze(1).transpose(2,3) * mask
+ return path
+
+
+def clip_grad_value_(parameters, clip_value, norm_type=2):
+ if isinstance(parameters, torch.Tensor):
+ parameters = [parameters]
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
+ norm_type = float(norm_type)
+ if clip_value is not None:
+ clip_value = float(clip_value)
+
+ total_norm = 0
+ for p in parameters:
+ param_norm = p.grad.data.norm(norm_type)
+ total_norm += param_norm.item() ** norm_type
+ if clip_value is not None:
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
+ total_norm = total_norm ** (1. / norm_type)
+ return total_norm
diff --git a/modules/ddsp.py b/modules/ddsp.py
new file mode 100644
index 0000000000000000000000000000000000000000..b09ac5c5c19d165e75e1780877a857be8c104ed7
--- /dev/null
+++ b/modules/ddsp.py
@@ -0,0 +1,190 @@
+import torch
+import torch.nn as nn
+from torch.nn import functional as F
+import torch.fft as fft
+import numpy as np
+import librosa as li
+import math
+from scipy.signal import get_window
+
+
+def safe_log(x):
+ return torch.log(x + 1e-7)
+
+
+@torch.no_grad()
+def mean_std_loudness(dataset):
+ mean = 0
+ std = 0
+ n = 0
+ for _, _, l in dataset:
+ n += 1
+ mean += (l.mean().item() - mean) / n
+ std += (l.std().item() - std) / n
+ return mean, std
+
+
+def multiscale_fft(signal, scales, overlap):
+ stfts = []
+ for s in scales:
+ S = torch.stft(
+ signal,
+ s,
+ int(s * (1 - overlap)),
+ s,
+ torch.hann_window(s).to(signal),
+ True,
+ normalized=True,
+ return_complex=True,
+ ).abs()
+ stfts.append(S)
+ return stfts
+
+
+def resample(x, factor: int):
+ batch, frame, channel = x.shape
+ x = x.permute(0, 2, 1).reshape(batch * channel, 1, frame)
+
+ window = torch.hann_window(
+ factor * 2,
+ dtype=x.dtype,
+ device=x.device,
+ ).reshape(1, 1, -1)
+ y = torch.zeros(x.shape[0], x.shape[1], factor * x.shape[2]).to(x)
+ y[..., ::factor] = x
+ y[..., -1:] = x[..., -1:]
+ y = torch.nn.functional.pad(y, [factor, factor])
+ y = torch.nn.functional.conv1d(y, window)[..., :-1]
+
+ y = y.reshape(batch, channel, factor * frame).permute(0, 2, 1)
+
+ return y
+
+
+def upsample(signal, factor):
+ signal = signal.permute(0, 2, 1)
+ signal = nn.functional.interpolate(signal, size=signal.shape[-1] * factor)
+ return signal.permute(0, 2, 1)
+
+
+def remove_above_nyquist(amplitudes, pitch, sampling_rate):
+ n_harm = amplitudes.shape[-1]
+ pitches = pitch * torch.arange(1, n_harm + 1).to(pitch)
+ aa = (pitches < sampling_rate / 2).float() + 1e-4
+ return amplitudes * aa
+
+
+def scale_function(x):
+ return 2 * torch.sigmoid(x) ** (math.log(10)) + 1e-7
+
+
+def extract_loudness(signal, sampling_rate, block_size, n_fft=2048):
+ S = li.stft(
+ signal,
+ n_fft=n_fft,
+ hop_length=block_size,
+ win_length=n_fft,
+ center=True,
+ )
+ S = np.log(abs(S) + 1e-7)
+ f = li.fft_frequencies(sampling_rate, n_fft)
+ a_weight = li.A_weighting(f)
+
+ S = S + a_weight.reshape(-1, 1)
+
+ S = np.mean(S, 0)[..., :-1]
+
+ return S
+
+
+def extract_pitch(signal, sampling_rate, block_size):
+ length = signal.shape[-1] // block_size
+ f0 = crepe.predict(
+ signal,
+ sampling_rate,
+ step_size=int(1000 * block_size / sampling_rate),
+ verbose=1,
+ center=True,
+ viterbi=True,
+ )
+ f0 = f0[1].reshape(-1)[:-1]
+
+ if f0.shape[-1] != length:
+ f0 = np.interp(
+ np.linspace(0, 1, length, endpoint=False),
+ np.linspace(0, 1, f0.shape[-1], endpoint=False),
+ f0,
+ )
+
+ return f0
+
+
+def mlp(in_size, hidden_size, n_layers):
+ channels = [in_size] + (n_layers) * [hidden_size]
+ net = []
+ for i in range(n_layers):
+ net.append(nn.Linear(channels[i], channels[i + 1]))
+ net.append(nn.LayerNorm(channels[i + 1]))
+ net.append(nn.LeakyReLU())
+ return nn.Sequential(*net)
+
+
+def gru(n_input, hidden_size):
+ return nn.GRU(n_input * hidden_size, hidden_size, batch_first=True)
+
+
+def harmonic_synth(pitch, amplitudes, sampling_rate):
+ n_harmonic = amplitudes.shape[-1]
+ omega = torch.cumsum(2 * math.pi * pitch / sampling_rate, 1)
+ omegas = omega * torch.arange(1, n_harmonic + 1).to(omega)
+ signal = (torch.sin(omegas) * amplitudes).sum(-1, keepdim=True)
+ return signal
+
+
+def amp_to_impulse_response(amp, target_size):
+ amp = torch.stack([amp, torch.zeros_like(amp)], -1)
+ amp = torch.view_as_complex(amp)
+ amp = fft.irfft(amp)
+
+ filter_size = amp.shape[-1]
+
+ amp = torch.roll(amp, filter_size // 2, -1)
+ win = torch.hann_window(filter_size, dtype=amp.dtype, device=amp.device)
+
+ amp = amp * win
+
+ amp = nn.functional.pad(amp, (0, int(target_size) - int(filter_size)))
+ amp = torch.roll(amp, -filter_size // 2, -1)
+
+ return amp
+
+
+def fft_convolve(signal, kernel):
+ signal = nn.functional.pad(signal, (0, signal.shape[-1]))
+ kernel = nn.functional.pad(kernel, (kernel.shape[-1], 0))
+
+ output = fft.irfft(fft.rfft(signal) * fft.rfft(kernel))
+ output = output[..., output.shape[-1] // 2:]
+
+ return output
+
+
+def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False):
+ if win_type == 'None' or win_type is None:
+ window = np.ones(win_len)
+ else:
+ window = get_window(win_type, win_len, fftbins=True) # **0.5
+
+ N = fft_len
+ fourier_basis = np.fft.rfft(np.eye(N))[:win_len]
+ real_kernel = np.real(fourier_basis)
+ imag_kernel = np.imag(fourier_basis)
+ kernel = np.concatenate([real_kernel, imag_kernel], 1).T
+
+ if invers:
+ kernel = np.linalg.pinv(kernel).T
+
+ kernel = kernel * window
+ kernel = kernel[:, None, :]
+ return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None, :, None].astype(np.float32))
+
diff --git a/modules/losses.py b/modules/losses.py
new file mode 100644
index 0000000000000000000000000000000000000000..cd21799eccde350c3aac0bdd661baf96ed220147
--- /dev/null
+++ b/modules/losses.py
@@ -0,0 +1,61 @@
+import torch
+from torch.nn import functional as F
+
+import modules.commons as commons
+
+
+def feature_loss(fmap_r, fmap_g):
+ loss = 0
+ for dr, dg in zip(fmap_r, fmap_g):
+ for rl, gl in zip(dr, dg):
+ rl = rl.float().detach()
+ gl = gl.float()
+ loss += torch.mean(torch.abs(rl - gl))
+
+ return loss * 2
+
+
+def discriminator_loss(disc_real_outputs, disc_generated_outputs):
+ loss = 0
+ r_losses = []
+ g_losses = []
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
+ dr = dr.float()
+ dg = dg.float()
+ r_loss = torch.mean((1-dr)**2)
+ g_loss = torch.mean(dg**2)
+ loss += (r_loss + g_loss)
+ r_losses.append(r_loss.item())
+ g_losses.append(g_loss.item())
+
+ return loss, r_losses, g_losses
+
+
+def generator_loss(disc_outputs):
+ loss = 0
+ gen_losses = []
+ for dg in disc_outputs:
+ dg = dg.float()
+ l = torch.mean((1-dg)**2)
+ gen_losses.append(l)
+ loss += l
+
+ return loss, gen_losses
+
+
+def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
+ """
+ z_p, logs_q: [b, h, t_t]
+ m_p, logs_p: [b, h, t_t]
+ """
+ z_p = z_p.float()
+ logs_q = logs_q.float()
+ m_p = m_p.float()
+ logs_p = logs_p.float()
+ z_mask = z_mask.float()
+ #print(logs_p)
+ kl = logs_p - logs_q - 0.5
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
+ kl = torch.sum(kl * z_mask)
+ l = kl / torch.sum(z_mask)
+ return l
diff --git a/modules/mel_processing.py b/modules/mel_processing.py
new file mode 100644
index 0000000000000000000000000000000000000000..99c5b35beb83f3b288af0fac5b49ebf2c69f062c
--- /dev/null
+++ b/modules/mel_processing.py
@@ -0,0 +1,112 @@
+import math
+import os
+import random
+import torch
+from torch import nn
+import torch.nn.functional as F
+import torch.utils.data
+import numpy as np
+import librosa
+import librosa.util as librosa_util
+from librosa.util import normalize, pad_center, tiny
+from scipy.signal import get_window
+from scipy.io.wavfile import read
+from librosa.filters import mel as librosa_mel_fn
+
+MAX_WAV_VALUE = 32768.0
+
+
+def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
+ """
+ PARAMS
+ ------
+ C: compression factor
+ """
+ return torch.log(torch.clamp(x, min=clip_val) * C)
+
+
+def dynamic_range_decompression_torch(x, C=1):
+ """
+ PARAMS
+ ------
+ C: compression factor used to compress
+ """
+ return torch.exp(x) / C
+
+
+def spectral_normalize_torch(magnitudes):
+ output = dynamic_range_compression_torch(magnitudes)
+ return output
+
+
+def spectral_de_normalize_torch(magnitudes):
+ output = dynamic_range_decompression_torch(magnitudes)
+ return output
+
+
+mel_basis = {}
+hann_window = {}
+
+
+def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
+ if torch.min(y) < -1.:
+ print('min value is ', torch.min(y))
+ if torch.max(y) > 1.:
+ print('max value is ', torch.max(y))
+
+ global hann_window
+ dtype_device = str(y.dtype) + '_' + str(y.device)
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
+ if wnsize_dtype_device not in hann_window:
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
+
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
+ y = y.squeeze(1)
+
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
+
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
+ return spec
+
+
+def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
+ global mel_basis
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
+ if fmax_dtype_device not in mel_basis:
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
+ spec = spectral_normalize_torch(spec)
+ return spec
+
+
+def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
+ if torch.min(y) < -1.:
+ print('min value is ', torch.min(y))
+ if torch.max(y) > 1.:
+ print('max value is ', torch.max(y))
+
+ global mel_basis, hann_window
+ dtype_device = str(y.dtype) + '_' + str(y.device)
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
+ if fmax_dtype_device not in mel_basis:
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
+ if wnsize_dtype_device not in hann_window:
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
+
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
+ y = y.squeeze(1)
+
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
+
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
+
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
+ spec = spectral_normalize_torch(spec)
+
+ return spec
diff --git a/modules/modules.py b/modules/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..54290fd207b25e93831bd21005990ea137e6b50e
--- /dev/null
+++ b/modules/modules.py
@@ -0,0 +1,342 @@
+import copy
+import math
+import numpy as np
+import scipy
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm
+
+import modules.commons as commons
+from modules.commons import init_weights, get_padding
+
+
+LRELU_SLOPE = 0.1
+
+
+class LayerNorm(nn.Module):
+ def __init__(self, channels, eps=1e-5):
+ super().__init__()
+ self.channels = channels
+ self.eps = eps
+
+ self.gamma = nn.Parameter(torch.ones(channels))
+ self.beta = nn.Parameter(torch.zeros(channels))
+
+ def forward(self, x):
+ x = x.transpose(1, -1)
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
+ return x.transpose(1, -1)
+
+
+class ConvReluNorm(nn.Module):
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
+ super().__init__()
+ self.in_channels = in_channels
+ self.hidden_channels = hidden_channels
+ self.out_channels = out_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+ assert n_layers > 1, "Number of layers should be larger than 0."
+
+ self.conv_layers = nn.ModuleList()
+ self.norm_layers = nn.ModuleList()
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.relu_drop = nn.Sequential(
+ nn.ReLU(),
+ nn.Dropout(p_dropout))
+ for _ in range(n_layers-1):
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask):
+ x_org = x
+ for i in range(self.n_layers):
+ x = self.conv_layers[i](x * x_mask)
+ x = self.norm_layers[i](x)
+ x = self.relu_drop(x)
+ x = x_org + self.proj(x)
+ return x * x_mask
+
+
+class DDSConv(nn.Module):
+ """
+ Dialted and Depth-Separable Convolution
+ """
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
+ super().__init__()
+ self.channels = channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+
+ self.drop = nn.Dropout(p_dropout)
+ self.convs_sep = nn.ModuleList()
+ self.convs_1x1 = nn.ModuleList()
+ self.norms_1 = nn.ModuleList()
+ self.norms_2 = nn.ModuleList()
+ for i in range(n_layers):
+ dilation = kernel_size ** i
+ padding = (kernel_size * dilation - dilation) // 2
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
+ groups=channels, dilation=dilation, padding=padding
+ ))
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
+ self.norms_1.append(LayerNorm(channels))
+ self.norms_2.append(LayerNorm(channels))
+
+ def forward(self, x, x_mask, g=None):
+ if g is not None:
+ x = x + g
+ for i in range(self.n_layers):
+ y = self.convs_sep[i](x * x_mask)
+ y = self.norms_1[i](y)
+ y = F.gelu(y)
+ y = self.convs_1x1[i](y)
+ y = self.norms_2[i](y)
+ y = F.gelu(y)
+ y = self.drop(y)
+ x = x + y
+ return x * x_mask
+
+
+class WN(torch.nn.Module):
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
+ super(WN, self).__init__()
+ assert(kernel_size % 2 == 1)
+ self.hidden_channels =hidden_channels
+ self.kernel_size = kernel_size,
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.p_dropout = p_dropout
+
+ self.in_layers = torch.nn.ModuleList()
+ self.res_skip_layers = torch.nn.ModuleList()
+ self.drop = nn.Dropout(p_dropout)
+
+ if gin_channels != 0:
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
+
+ for i in range(n_layers):
+ dilation = dilation_rate ** i
+ padding = int((kernel_size * dilation - dilation) / 2)
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
+ dilation=dilation, padding=padding)
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
+ self.in_layers.append(in_layer)
+
+ # last one is not necessary
+ if i < n_layers - 1:
+ res_skip_channels = 2 * hidden_channels
+ else:
+ res_skip_channels = hidden_channels
+
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
+ self.res_skip_layers.append(res_skip_layer)
+
+ def forward(self, x, x_mask, g=None, **kwargs):
+ output = torch.zeros_like(x)
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
+
+ if g is not None:
+ g = self.cond_layer(g)
+
+ for i in range(self.n_layers):
+ x_in = self.in_layers[i](x)
+ if g is not None:
+ cond_offset = i * 2 * self.hidden_channels
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
+ else:
+ g_l = torch.zeros_like(x_in)
+
+ acts = commons.fused_add_tanh_sigmoid_multiply(
+ x_in,
+ g_l,
+ n_channels_tensor)
+ acts = self.drop(acts)
+
+ res_skip_acts = self.res_skip_layers[i](acts)
+ if i < self.n_layers - 1:
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
+ x = (x + res_acts) * x_mask
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
+ else:
+ output = output + res_skip_acts
+ return output * x_mask
+
+ def remove_weight_norm(self):
+ if self.gin_channels != 0:
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
+ for l in self.in_layers:
+ torch.nn.utils.remove_weight_norm(l)
+ for l in self.res_skip_layers:
+ torch.nn.utils.remove_weight_norm(l)
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super(ResBlock1, self).__init__()
+ self.convs1 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2])))
+ ])
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1)))
+ ])
+ self.convs2.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c2(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
+ super(ResBlock2, self).__init__()
+ self.convs = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1])))
+ ])
+ self.convs.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+class Log(nn.Module):
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
+ logdet = torch.sum(-y, [1, 2])
+ return y, logdet
+ else:
+ x = torch.exp(x) * x_mask
+ return x
+
+
+class Flip(nn.Module):
+ def forward(self, x, *args, reverse=False, **kwargs):
+ x = torch.flip(x, [1])
+ if not reverse:
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
+ return x, logdet
+ else:
+ return x
+
+
+class ElementwiseAffine(nn.Module):
+ def __init__(self, channels):
+ super().__init__()
+ self.channels = channels
+ self.m = nn.Parameter(torch.zeros(channels,1))
+ self.logs = nn.Parameter(torch.zeros(channels,1))
+
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = self.m + torch.exp(self.logs) * x
+ y = y * x_mask
+ logdet = torch.sum(self.logs * x_mask, [1,2])
+ return y, logdet
+ else:
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
+ return x
+
+
+class ResidualCouplingLayer(nn.Module):
+ def __init__(self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=0,
+ gin_channels=0,
+ mean_only=False):
+ assert channels % 2 == 0, "channels should be divisible by 2"
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.half_channels = channels // 2
+ self.mean_only = mean_only
+
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
+ self.post.weight.data.zero_()
+ self.post.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
+ h = self.pre(x0) * x_mask
+ h = self.enc(h, x_mask, g=g)
+ stats = self.post(h) * x_mask
+ if not self.mean_only:
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
+ else:
+ m = stats
+ logs = torch.zeros_like(m)
+
+ if not reverse:
+ x1 = m + x1 * torch.exp(logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ logdet = torch.sum(logs, [1,2])
+ return x, logdet
+ else:
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ return x
diff --git a/onnx/model_onnx.py b/onnx/model_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..1567d28875c8a6620d5db8114daa0f073ddb145c
--- /dev/null
+++ b/onnx/model_onnx.py
@@ -0,0 +1,328 @@
+import copy
+import math
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+import modules.attentions as attentions
+import modules.commons as commons
+import modules.modules as modules
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from modules.commons import init_weights, get_padding
+from vdecoder.hifigan.models import Generator
+from utils import f0_to_coarse
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+
+class Encoder(nn.Module):
+ def __init__(self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ # print(x.shape,x_lengths.shape)
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+
+class TextEncoder(nn.Module):
+ def __init__(self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ filter_channels=None,
+ n_heads=None,
+ p_dropout=None):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+ self.f0_emb = nn.Embedding(256, hidden_channels)
+
+ self.enc_ = attentions.Encoder(
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout)
+
+ def forward(self, x, x_lengths, f0=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
+ x = self.pre(x) * x_mask
+ x = x + self.f0_emb(f0.long()).transpose(1,2)
+ x = self.enc_(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+
+ return z, m, logs, x_mask
+
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
+ ])
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ])
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2,3,5,7,11]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class SpeakerEncoder(torch.nn.Module):
+ def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
+ super(SpeakerEncoder, self).__init__()
+ self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
+ self.relu = nn.ReLU()
+
+ def forward(self, mels):
+ self.lstm.flatten_parameters()
+ _, (hidden, _) = self.lstm(mels)
+ embeds_raw = self.relu(self.linear(hidden[-1]))
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
+
+ def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
+ mel_slices = []
+ for i in range(0, total_frames-partial_frames, partial_hop):
+ mel_range = torch.arange(i, i+partial_frames)
+ mel_slices.append(mel_range)
+
+ return mel_slices
+
+ def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
+ mel_len = mel.size(1)
+ last_mel = mel[:,-partial_frames:]
+
+ if mel_len > partial_frames:
+ mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
+ mels = list(mel[:,s] for s in mel_slices)
+ mels.append(last_mel)
+ mels = torch.stack(tuple(mels), 0).squeeze(1)
+
+ with torch.no_grad():
+ partial_embeds = self(mels)
+ embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
+ #embed = embed / torch.linalg.norm(embed, 2)
+ else:
+ with torch.no_grad():
+ embed = self(last_mel)
+
+ return embed
+
+
+class SynthesizerTrn(nn.Module):
+ """
+ Synthesizer for Training
+ """
+
+ def __init__(self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ ssl_dim,
+ n_speakers,
+ **kwargs):
+
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ self.ssl_dim = ssl_dim
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
+
+ self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout)
+ hps = {
+ "sampling_rate": 32000,
+ "inter_channels": 192,
+ "resblock": "1",
+ "resblock_kernel_sizes": [3, 7, 11],
+ "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
+ "upsample_rates": [10, 8, 2, 2],
+ "upsample_initial_channel": 512,
+ "upsample_kernel_sizes": [16, 16, 4, 4],
+ "gin_channels": 256,
+ }
+ self.dec = Generator(h=hps)
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
+
+ def forward(self, c, c_lengths, f0, g=None):
+ g = self.emb_g(g.unsqueeze(0)).transpose(1,2)
+ z_p, m_p, logs_p, c_mask = self.enc_p_(c.transpose(1,2), c_lengths, f0=f0_to_coarse(f0))
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
+ o = self.dec(z * c_mask, g=g, f0=f0.float())
+ return o
+
diff --git a/onnx/model_onnx_48k.py b/onnx/model_onnx_48k.py
new file mode 100644
index 0000000000000000000000000000000000000000..d35c92e5d0606d29f40a9ad08a50b60cc93bc48b
--- /dev/null
+++ b/onnx/model_onnx_48k.py
@@ -0,0 +1,328 @@
+import copy
+import math
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+import modules.attentions as attentions
+import modules.commons as commons
+import modules.modules as modules
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from modules.commons import init_weights, get_padding
+from vdecoder.hifigan.models import Generator
+from utils import f0_to_coarse
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+
+class Encoder(nn.Module):
+ def __init__(self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ # print(x.shape,x_lengths.shape)
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+
+class TextEncoder(nn.Module):
+ def __init__(self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ filter_channels=None,
+ n_heads=None,
+ p_dropout=None):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+ self.f0_emb = nn.Embedding(256, hidden_channels)
+
+ self.enc_ = attentions.Encoder(
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout)
+
+ def forward(self, x, x_lengths, f0=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
+ x = self.pre(x) * x_mask
+ x = x + self.f0_emb(f0.long()).transpose(1,2)
+ x = self.enc_(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+
+ return z, m, logs, x_mask
+
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
+ ])
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ])
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2,3,5,7,11]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class SpeakerEncoder(torch.nn.Module):
+ def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
+ super(SpeakerEncoder, self).__init__()
+ self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
+ self.relu = nn.ReLU()
+
+ def forward(self, mels):
+ self.lstm.flatten_parameters()
+ _, (hidden, _) = self.lstm(mels)
+ embeds_raw = self.relu(self.linear(hidden[-1]))
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
+
+ def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
+ mel_slices = []
+ for i in range(0, total_frames-partial_frames, partial_hop):
+ mel_range = torch.arange(i, i+partial_frames)
+ mel_slices.append(mel_range)
+
+ return mel_slices
+
+ def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
+ mel_len = mel.size(1)
+ last_mel = mel[:,-partial_frames:]
+
+ if mel_len > partial_frames:
+ mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
+ mels = list(mel[:,s] for s in mel_slices)
+ mels.append(last_mel)
+ mels = torch.stack(tuple(mels), 0).squeeze(1)
+
+ with torch.no_grad():
+ partial_embeds = self(mels)
+ embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
+ #embed = embed / torch.linalg.norm(embed, 2)
+ else:
+ with torch.no_grad():
+ embed = self(last_mel)
+
+ return embed
+
+
+class SynthesizerTrn(nn.Module):
+ """
+ Synthesizer for Training
+ """
+
+ def __init__(self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ ssl_dim,
+ n_speakers,
+ **kwargs):
+
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ self.ssl_dim = ssl_dim
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
+
+ self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout)
+ hps = {
+ "sampling_rate": 48000,
+ "inter_channels": 192,
+ "resblock": "1",
+ "resblock_kernel_sizes": [3, 7, 11],
+ "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
+ "upsample_rates": [10, 8, 2, 2],
+ "upsample_initial_channel": 512,
+ "upsample_kernel_sizes": [16, 16, 4, 4],
+ "gin_channels": 256,
+ }
+ self.dec = Generator(h=hps)
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
+
+ def forward(self, c, c_lengths, f0, g=None):
+ g = self.emb_g(g.unsqueeze(0)).transpose(1,2)
+ z_p, m_p, logs_p, c_mask = self.enc_p_(c.transpose(1,2), c_lengths, f0=f0_to_coarse(f0))
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
+ o = self.dec(z * c_mask, g=g, f0=f0.float())
+ return o
+
diff --git a/onnx/onnx_export.py b/onnx/onnx_export.py
new file mode 100644
index 0000000000000000000000000000000000000000..976bfe97a213d1390bdc044b5d86cab84d10e63b
--- /dev/null
+++ b/onnx/onnx_export.py
@@ -0,0 +1,73 @@
+import argparse
+import time
+import numpy as np
+import onnx
+from onnxsim import simplify
+import onnxruntime as ort
+import onnxoptimizer
+import torch
+from model_onnx import SynthesizerTrn
+import utils
+from hubert import hubert_model_onnx
+
+def main(HubertExport,NetExport):
+
+ path = "NyaruTaffy"
+
+ if(HubertExport):
+ device = torch.device("cuda")
+ hubert_soft = utils.get_hubert_model()
+ test_input = torch.rand(1, 1, 16000)
+ input_names = ["source"]
+ output_names = ["embed"]
+ torch.onnx.export(hubert_soft.to(device),
+ test_input.to(device),
+ "hubert3.0.onnx",
+ dynamic_axes={
+ "source": {
+ 2: "sample_length"
+ }
+ },
+ verbose=False,
+ opset_version=13,
+ input_names=input_names,
+ output_names=output_names)
+ if(NetExport):
+ device = torch.device("cuda")
+ hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
+ SVCVITS = SynthesizerTrn(
+ hps.data.filter_length // 2 + 1,
+ hps.train.segment_size // hps.data.hop_length,
+ **hps.model)
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
+ _ = SVCVITS.eval().to(device)
+ for i in SVCVITS.parameters():
+ i.requires_grad = False
+ test_hidden_unit = torch.rand(1, 50, 256)
+ test_lengths = torch.LongTensor([50])
+ test_pitch = torch.rand(1, 50)
+ test_sid = torch.LongTensor([0])
+ input_names = ["hidden_unit", "lengths", "pitch", "sid"]
+ output_names = ["audio", ]
+ SVCVITS.eval()
+ torch.onnx.export(SVCVITS,
+ (
+ test_hidden_unit.to(device),
+ test_lengths.to(device),
+ test_pitch.to(device),
+ test_sid.to(device)
+ ),
+ f"checkpoints/{path}/model.onnx",
+ dynamic_axes={
+ "hidden_unit": [0, 1],
+ "pitch": [1]
+ },
+ do_constant_folding=False,
+ opset_version=16,
+ verbose=False,
+ input_names=input_names,
+ output_names=output_names)
+
+
+if __name__ == '__main__':
+ main(False,True)
diff --git a/onnx/onnx_export_48k.py b/onnx/onnx_export_48k.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a046353dc25b658684fa76bdf8b4f21d1a77c98
--- /dev/null
+++ b/onnx/onnx_export_48k.py
@@ -0,0 +1,73 @@
+import argparse
+import time
+import numpy as np
+import onnx
+from onnxsim import simplify
+import onnxruntime as ort
+import onnxoptimizer
+import torch
+from model_onnx_48k import SynthesizerTrn
+import utils
+from hubert import hubert_model_onnx
+
+def main(HubertExport,NetExport):
+
+ path = "NyaruTaffy"
+
+ if(HubertExport):
+ device = torch.device("cuda")
+ hubert_soft = hubert_model_onnx.hubert_soft("hubert/model.pt")
+ test_input = torch.rand(1, 1, 16000)
+ input_names = ["source"]
+ output_names = ["embed"]
+ torch.onnx.export(hubert_soft.to(device),
+ test_input.to(device),
+ "hubert3.0.onnx",
+ dynamic_axes={
+ "source": {
+ 2: "sample_length"
+ }
+ },
+ verbose=False,
+ opset_version=13,
+ input_names=input_names,
+ output_names=output_names)
+ if(NetExport):
+ device = torch.device("cuda")
+ hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
+ SVCVITS = SynthesizerTrn(
+ hps.data.filter_length // 2 + 1,
+ hps.train.segment_size // hps.data.hop_length,
+ **hps.model)
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
+ _ = SVCVITS.eval().to(device)
+ for i in SVCVITS.parameters():
+ i.requires_grad = False
+ test_hidden_unit = torch.rand(1, 50, 256)
+ test_lengths = torch.LongTensor([50])
+ test_pitch = torch.rand(1, 50)
+ test_sid = torch.LongTensor([0])
+ input_names = ["hidden_unit", "lengths", "pitch", "sid"]
+ output_names = ["audio", ]
+ SVCVITS.eval()
+ torch.onnx.export(SVCVITS,
+ (
+ test_hidden_unit.to(device),
+ test_lengths.to(device),
+ test_pitch.to(device),
+ test_sid.to(device)
+ ),
+ f"checkpoints/{path}/model.onnx",
+ dynamic_axes={
+ "hidden_unit": [0, 1],
+ "pitch": [1]
+ },
+ do_constant_folding=False,
+ opset_version=16,
+ verbose=False,
+ input_names=input_names,
+ output_names=output_names)
+
+
+if __name__ == '__main__':
+ main(False,True)
diff --git a/preprocess_flist_config.py b/preprocess_flist_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..6e3dd0bd9390a509c282bbde4ff2631ac94404e4
--- /dev/null
+++ b/preprocess_flist_config.py
@@ -0,0 +1,67 @@
+import os
+import argparse
+import re
+
+from tqdm import tqdm
+from random import shuffle
+import json
+
+config_template = json.load(open("configs/config.json"))
+
+pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
+ parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
+ parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
+ parser.add_argument("--source_dir", type=str, default="./dataset/44k", help="path to source dir")
+ args = parser.parse_args()
+
+ train = []
+ val = []
+ test = []
+ idx = 0
+ spk_dict = {}
+ spk_id = 0
+ for speaker in tqdm(os.listdir(args.source_dir)):
+ spk_dict[speaker] = spk_id
+ spk_id += 1
+ wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
+ for wavpath in wavs:
+ if not pattern.match(wavpath):
+ print(f"warning:文件名{wavpath}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
+ if len(wavs) < 10:
+ print(f"warning:{speaker}数据集数量小于10条,请补充数据")
+ wavs = [i for i in wavs if i.endswith("wav")]
+ shuffle(wavs)
+ train += wavs[2:-2]
+ val += wavs[:2]
+ test += wavs[-2:]
+
+ shuffle(train)
+ shuffle(val)
+ shuffle(test)
+
+ print("Writing", args.train_list)
+ with open(args.train_list, "w") as f:
+ for fname in tqdm(train):
+ wavpath = fname
+ f.write(wavpath + "\n")
+
+ print("Writing", args.val_list)
+ with open(args.val_list, "w") as f:
+ for fname in tqdm(val):
+ wavpath = fname
+ f.write(wavpath + "\n")
+
+ print("Writing", args.test_list)
+ with open(args.test_list, "w") as f:
+ for fname in tqdm(test):
+ wavpath = fname
+ f.write(wavpath + "\n")
+
+ config_template["spk"] = spk_dict
+ print("Writing configs/config.json")
+ with open("configs/config.json", "w") as f:
+ json.dump(config_template, f, indent=2)
diff --git a/preprocess_hubert_f0.py b/preprocess_hubert_f0.py
new file mode 100644
index 0000000000000000000000000000000000000000..29a1c7ee028fefbe7905d235447d98cda34ce840
--- /dev/null
+++ b/preprocess_hubert_f0.py
@@ -0,0 +1,62 @@
+import math
+import multiprocessing
+import os
+import argparse
+from random import shuffle
+
+import torch
+from glob import glob
+from tqdm import tqdm
+
+import utils
+import logging
+logging.getLogger('numba').setLevel(logging.WARNING)
+import librosa
+import numpy as np
+
+hps = utils.get_hparams_from_file("configs/config.json")
+sampling_rate = hps.data.sampling_rate
+hop_length = hps.data.hop_length
+
+
+def process_one(filename, hmodel):
+ # print(filename)
+ wav, sr = librosa.load(filename, sr=sampling_rate)
+ soft_path = filename + ".soft.pt"
+ if not os.path.exists(soft_path):
+ devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+ wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
+ wav16k = torch.from_numpy(wav16k).to(devive)
+ c = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k)
+ torch.save(c.cpu(), soft_path)
+ f0_path = filename + ".f0.npy"
+ if not os.path.exists(f0_path):
+ f0 = utils.compute_f0_dio(wav, sampling_rate=sampling_rate, hop_length=hop_length)
+ np.save(f0_path, f0)
+
+
+def process_batch(filenames):
+ print("Loading hubert for content...")
+ device = "cuda" if torch.cuda.is_available() else "cpu"
+ hmodel = utils.get_hubert_model().to(device)
+ print("Loaded hubert.")
+ for filename in tqdm(filenames):
+ process_one(filename, hmodel)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--in_dir", type=str, default="dataset/44k", help="path to input dir")
+
+ args = parser.parse_args()
+ filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) # [:10]
+ shuffle(filenames)
+ multiprocessing.set_start_method('spawn')
+
+ num_processes = 1
+ chunk_size = int(math.ceil(len(filenames) / num_processes))
+ chunks = [filenames[i:i + chunk_size] for i in range(0, len(filenames), chunk_size)]
+ print([len(c) for c in chunks])
+ processes = [multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks]
+ for p in processes:
+ p.start()
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..603dfb1bc9e1c2617ba3f7e0deac4c0f0af30741
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,21 @@
+Flask
+Flask_Cors
+gradio
+numpy
+playsound
+pydub
+requests
+scipy
+sounddevice
+SoundFile
+starlette
+torch
+torchaudio
+tqdm
+scikit-maad
+praat-parselmouth
+onnx
+onnxsim
+onnxoptimizer
+fairseq
+librosa
diff --git a/resample.py b/resample.py
new file mode 100644
index 0000000000000000000000000000000000000000..5e96106c9a066e6d73652c544322d029dd98f746
--- /dev/null
+++ b/resample.py
@@ -0,0 +1,48 @@
+import os
+import argparse
+import librosa
+import numpy as np
+from multiprocessing import Pool, cpu_count
+from scipy.io import wavfile
+from tqdm import tqdm
+
+
+def process(item):
+ spkdir, wav_name, args = item
+ # speaker 's5', 'p280', 'p315' are excluded,
+ speaker = spkdir.replace("\\", "/").split("/")[-1]
+ wav_path = os.path.join(args.in_dir, speaker, wav_name)
+ if os.path.exists(wav_path) and '.wav' in wav_path:
+ os.makedirs(os.path.join(args.out_dir2, speaker), exist_ok=True)
+ wav, sr = librosa.load(wav_path, None)
+ wav, _ = librosa.effects.trim(wav, top_db=20)
+ peak = np.abs(wav).max()
+ if peak > 1.0:
+ wav = 0.98 * wav / peak
+ wav2 = librosa.resample(wav, orig_sr=sr, target_sr=args.sr2)
+ wav2 /= max(wav2.max(), -wav2.min())
+ save_name = wav_name
+ save_path2 = os.path.join(args.out_dir2, speaker, save_name)
+ wavfile.write(
+ save_path2,
+ args.sr2,
+ (wav2 * np.iinfo(np.int16).max).astype(np.int16)
+ )
+
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--sr2", type=int, default=44100, help="sampling rate")
+ parser.add_argument("--in_dir", type=str, default="./dataset_raw", help="path to source dir")
+ parser.add_argument("--out_dir2", type=str, default="./dataset/44k", help="path to target dir")
+ args = parser.parse_args()
+ processs = cpu_count()-2 if cpu_count() >4 else 1
+ pool = Pool(processes=processs)
+
+ for speaker in os.listdir(args.in_dir):
+ spk_dir = os.path.join(args.in_dir, speaker)
+ if os.path.isdir(spk_dir):
+ print(spk_dir)
+ for _ in tqdm(pool.imap_unordered(process, [(spk_dir, i, args) for i in os.listdir(spk_dir) if i.endswith("wav")])):
+ pass
diff --git a/spec_gen.py b/spec_gen.py
new file mode 100644
index 0000000000000000000000000000000000000000..9476395adab6fa841fde10c05fbb92902310ebd4
--- /dev/null
+++ b/spec_gen.py
@@ -0,0 +1,22 @@
+from data_utils import TextAudioSpeakerLoader
+import json
+from tqdm import tqdm
+
+from utils import HParams
+
+config_path = 'configs/config.json'
+with open(config_path, "r") as f:
+ data = f.read()
+config = json.loads(data)
+hps = HParams(**config)
+
+train_dataset = TextAudioSpeakerLoader("filelists/train.txt", hps)
+test_dataset = TextAudioSpeakerLoader("filelists/test.txt", hps)
+eval_dataset = TextAudioSpeakerLoader("filelists/val.txt", hps)
+
+for _ in tqdm(train_dataset):
+ pass
+for _ in tqdm(eval_dataset):
+ pass
+for _ in tqdm(test_dataset):
+ pass
\ No newline at end of file
diff --git a/train.py b/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..0fc80bf4aacf143feaf08575eb285910c0c8ce0a
--- /dev/null
+++ b/train.py
@@ -0,0 +1,297 @@
+import logging
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+import os
+import json
+import argparse
+import itertools
+import math
+import torch
+from torch import nn, optim
+from torch.nn import functional as F
+from torch.utils.data import DataLoader
+from torch.utils.tensorboard import SummaryWriter
+import torch.multiprocessing as mp
+import torch.distributed as dist
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.cuda.amp import autocast, GradScaler
+
+import modules.commons as commons
+import utils
+from data_utils import TextAudioSpeakerLoader, TextAudioCollate
+from models import (
+ SynthesizerTrn,
+ MultiPeriodDiscriminator,
+)
+from modules.losses import (
+ kl_loss,
+ generator_loss, discriminator_loss, feature_loss
+)
+
+from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
+
+torch.backends.cudnn.benchmark = True
+global_step = 0
+
+
+# os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
+
+
+def main():
+ """Assume Single Node Multi GPUs Training Only"""
+ assert torch.cuda.is_available(), "CPU training is not allowed."
+ hps = utils.get_hparams()
+
+ n_gpus = torch.cuda.device_count()
+ os.environ['MASTER_ADDR'] = 'localhost'
+ os.environ['MASTER_PORT'] = hps.train.port
+
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
+
+
+def run(rank, n_gpus, hps):
+ global global_step
+ if rank == 0:
+ logger = utils.get_logger(hps.model_dir)
+ logger.info(hps)
+ utils.check_git_hash(hps.model_dir)
+ writer = SummaryWriter(log_dir=hps.model_dir)
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
+
+ # for pytorch on win, backend use gloo
+ dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
+ torch.manual_seed(hps.train.seed)
+ torch.cuda.set_device(rank)
+ collate_fn = TextAudioCollate()
+ train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
+ train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
+ batch_size=hps.train.batch_size,collate_fn=collate_fn)
+ if rank == 0:
+ eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps)
+ eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
+ batch_size=1, pin_memory=False,
+ drop_last=False, collate_fn=collate_fn)
+
+ net_g = SynthesizerTrn(
+ hps.data.filter_length // 2 + 1,
+ hps.train.segment_size // hps.data.hop_length,
+ **hps.model).cuda(rank)
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
+ optim_g = torch.optim.AdamW(
+ net_g.parameters(),
+ hps.train.learning_rate,
+ betas=hps.train.betas,
+ eps=hps.train.eps)
+ optim_d = torch.optim.AdamW(
+ net_d.parameters(),
+ hps.train.learning_rate,
+ betas=hps.train.betas,
+ eps=hps.train.eps)
+ net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True)
+ net_d = DDP(net_d, device_ids=[rank])
+
+ skip_optimizer = True
+ try:
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
+ optim_g, skip_optimizer)
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
+ optim_d, skip_optimizer)
+ global_step = (epoch_str - 1) * len(train_loader)
+ except:
+ print("load old checkpoint failed...")
+ epoch_str = 1
+ global_step = 0
+ if skip_optimizer:
+ epoch_str = 1
+ global_step = 0
+
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
+
+ scaler = GradScaler(enabled=hps.train.fp16_run)
+
+ for epoch in range(epoch_str, hps.train.epochs + 1):
+ if rank == 0:
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
+ [train_loader, eval_loader], logger, [writer, writer_eval])
+ else:
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
+ [train_loader, None], None, None)
+ scheduler_g.step()
+ scheduler_d.step()
+
+
+def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
+ net_g, net_d = nets
+ optim_g, optim_d = optims
+ scheduler_g, scheduler_d = schedulers
+ train_loader, eval_loader = loaders
+ if writers is not None:
+ writer, writer_eval = writers
+
+ # train_loader.batch_sampler.set_epoch(epoch)
+ global global_step
+
+ net_g.train()
+ net_d.train()
+ for batch_idx, items in enumerate(train_loader):
+ c, f0, spec, y, spk, lengths, uv = items
+ g = spk.cuda(rank, non_blocking=True)
+ spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
+ c = c.cuda(rank, non_blocking=True)
+ f0 = f0.cuda(rank, non_blocking=True)
+ uv = uv.cuda(rank, non_blocking=True)
+ lengths = lengths.cuda(rank, non_blocking=True)
+ mel = spec_to_mel_torch(
+ spec,
+ hps.data.filter_length,
+ hps.data.n_mel_channels,
+ hps.data.sampling_rate,
+ hps.data.mel_fmin,
+ hps.data.mel_fmax)
+
+ with autocast(enabled=hps.train.fp16_run):
+ y_hat, ids_slice, z_mask, \
+ (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths,
+ spec_lengths=lengths)
+
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
+ y_hat_mel = mel_spectrogram_torch(
+ y_hat.squeeze(1),
+ hps.data.filter_length,
+ hps.data.n_mel_channels,
+ hps.data.sampling_rate,
+ hps.data.hop_length,
+ hps.data.win_length,
+ hps.data.mel_fmin,
+ hps.data.mel_fmax
+ )
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
+
+ # Discriminator
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
+
+ with autocast(enabled=False):
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
+ loss_disc_all = loss_disc
+
+ optim_d.zero_grad()
+ scaler.scale(loss_disc_all).backward()
+ scaler.unscale_(optim_d)
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
+ scaler.step(optim_d)
+
+ with autocast(enabled=hps.train.fp16_run):
+ # Generator
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
+ with autocast(enabled=False):
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
+ loss_fm = feature_loss(fmap_r, fmap_g)
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
+ loss_lf0 = F.mse_loss(pred_lf0, lf0)
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
+ optim_g.zero_grad()
+ scaler.scale(loss_gen_all).backward()
+ scaler.unscale_(optim_g)
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
+ scaler.step(optim_g)
+ scaler.update()
+
+ if rank == 0:
+ if global_step % hps.train.log_interval == 0:
+ lr = optim_g.param_groups[0]['lr']
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
+ epoch,
+ 100. * batch_idx / len(train_loader)))
+ logger.info([x.item() for x in losses] + [global_step, lr])
+
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
+ "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
+ scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl,
+ "loss/g/lf0": loss_lf0})
+
+ # scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
+ # scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
+ # scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
+ image_dict = {
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
+ "all/lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
+ pred_lf0[0, 0, :].detach().cpu().numpy()),
+ "all/norm_lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
+ norm_lf0[0, 0, :].detach().cpu().numpy())
+ }
+
+ utils.summarize(
+ writer=writer,
+ global_step=global_step,
+ images=image_dict,
+ scalars=scalar_dict
+ )
+
+ if global_step % hps.train.eval_interval == 0:
+ evaluate(hps, net_g, eval_loader, writer_eval)
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
+ os.path.join(hps.model_dir, "G_{}.pth".format(global_step)), hps.train.eval_interval, global_step)
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
+ os.path.join(hps.model_dir, "D_{}.pth".format(global_step)), hps.train.eval_interval, global_step)
+ global_step += 1
+
+ if rank == 0:
+ logger.info('====> Epoch: {}'.format(epoch))
+
+
+def evaluate(hps, generator, eval_loader, writer_eval):
+ generator.eval()
+ image_dict = {}
+ audio_dict = {}
+ with torch.no_grad():
+ for batch_idx, items in enumerate(eval_loader):
+ c, f0, spec, y, spk, _, uv = items
+ g = spk[:1].cuda(0)
+ spec, y = spec[:1].cuda(0), y[:1].cuda(0)
+ c = c[:1].cuda(0)
+ f0 = f0[:1].cuda(0)
+ uv= uv[:1].cuda(0)
+ mel = spec_to_mel_torch(
+ spec,
+ hps.data.filter_length,
+ hps.data.n_mel_channels,
+ hps.data.sampling_rate,
+ hps.data.mel_fmin,
+ hps.data.mel_fmax)
+ y_hat = generator.module.infer(c, f0, uv, g=g)
+
+ y_hat_mel = mel_spectrogram_torch(
+ y_hat.squeeze(1).float(),
+ hps.data.filter_length,
+ hps.data.n_mel_channels,
+ hps.data.sampling_rate,
+ hps.data.hop_length,
+ hps.data.win_length,
+ hps.data.mel_fmin,
+ hps.data.mel_fmax
+ )
+
+ audio_dict.update({
+ f"gen/audio_{batch_idx}": y_hat[0],
+ f"gt/audio_{batch_idx}": y[0]
+ })
+ image_dict.update({
+ f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
+ "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
+ })
+ utils.summarize(
+ writer=writer_eval,
+ global_step=global_step,
+ images=image_dict,
+ audios=audio_dict,
+ audio_sampling_rate=hps.data.sampling_rate
+ )
+ generator.train()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/utils.py b/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..f13d3526d514be71c77bebb17a5af8831b9c6a36
--- /dev/null
+++ b/utils.py
@@ -0,0 +1,508 @@
+import os
+import glob
+import re
+import sys
+import argparse
+import logging
+import json
+import subprocess
+import random
+
+import librosa
+import numpy as np
+from scipy.io.wavfile import read
+import torch
+from torch.nn import functional as F
+from modules.commons import sequence_mask
+from hubert import hubert_model
+MATPLOTLIB_FLAG = False
+
+logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
+logger = logging
+
+f0_bin = 256
+f0_max = 1100.0
+f0_min = 50.0
+f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+
+
+# def normalize_f0(f0, random_scale=True):
+# f0_norm = f0.clone() # create a copy of the input Tensor
+# batch_size, _, frame_length = f0_norm.shape
+# for i in range(batch_size):
+# means = torch.mean(f0_norm[i, 0, :])
+# if random_scale:
+# factor = random.uniform(0.8, 1.2)
+# else:
+# factor = 1
+# f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor
+# return f0_norm
+# def normalize_f0(f0, random_scale=True):
+# means = torch.mean(f0[:, 0, :], dim=1, keepdim=True)
+# if random_scale:
+# factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device)
+# else:
+# factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
+# f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
+# return f0_norm
+def normalize_f0(f0, x_mask, uv, random_scale=True):
+ # calculate means based on x_mask
+ uv_sum = torch.sum(uv, dim=1, keepdim=True)
+ uv_sum[uv_sum == 0] = 9999
+ means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
+
+ if random_scale:
+ factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
+ else:
+ factor = torch.ones(f0.shape[0], 1).to(f0.device)
+ # normalize f0 based on means and factor
+ f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
+ if torch.isnan(f0_norm).any():
+ exit(0)
+ return f0_norm * x_mask
+
+
+def plot_data_to_numpy(x, y):
+ global MATPLOTLIB_FLAG
+ if not MATPLOTLIB_FLAG:
+ import matplotlib
+ matplotlib.use("Agg")
+ MATPLOTLIB_FLAG = True
+ mpl_logger = logging.getLogger('matplotlib')
+ mpl_logger.setLevel(logging.WARNING)
+ import matplotlib.pylab as plt
+ import numpy as np
+
+ fig, ax = plt.subplots(figsize=(10, 2))
+ plt.plot(x)
+ plt.plot(y)
+ plt.tight_layout()
+
+ fig.canvas.draw()
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
+ plt.close()
+ return data
+
+
+
+def interpolate_f0(f0):
+ '''
+ 对F0进行插值处理
+ '''
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i]
+ last_value = data[i]
+
+ return ip_data[:,0], vuv_vector[:,0]
+
+
+def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
+ import parselmouth
+ x = wav_numpy
+ if p_len is None:
+ p_len = x.shape[0]//hop_length
+ else:
+ assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
+ time_step = hop_length / sampling_rate * 1000
+ f0_min = 50
+ f0_max = 1100
+ f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
+ time_step=time_step / 1000, voicing_threshold=0.6,
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
+
+ pad_size=(p_len - len(f0) + 1) // 2
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
+ return f0
+
+def resize_f0(x, target_len):
+ source = np.array(x)
+ source[source<0.001] = np.nan
+ target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
+ res = np.nan_to_num(target)
+ return res
+
+def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
+ import pyworld
+ if p_len is None:
+ p_len = wav_numpy.shape[0]//hop_length
+ f0, t = pyworld.dio(
+ wav_numpy.astype(np.double),
+ fs=sampling_rate,
+ f0_ceil=800,
+ frame_period=1000 * hop_length / sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
+ for index, pitch in enumerate(f0):
+ f0[index] = round(pitch, 1)
+ return resize_f0(f0, p_len)
+
+def f0_to_coarse(f0):
+ is_torch = isinstance(f0, torch.Tensor)
+ f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
+
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
+ f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
+ assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
+ return f0_coarse
+
+
+def get_hubert_model():
+ vec_path = "hubert/checkpoint_best_legacy_500.pt"
+ print("load model(s) from {}".format(vec_path))
+ from fairseq import checkpoint_utils
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
+ [vec_path],
+ suffix="",
+ )
+ model = models[0]
+ model.eval()
+ return model
+
+def get_hubert_content(hmodel, wav_16k_tensor):
+ feats = wav_16k_tensor
+ if feats.dim() == 2: # double channels
+ feats = feats.mean(-1)
+ assert feats.dim() == 1, feats.dim()
+ feats = feats.view(1, -1)
+ padding_mask = torch.BoolTensor(feats.shape).fill_(False)
+ inputs = {
+ "source": feats.to(wav_16k_tensor.device),
+ "padding_mask": padding_mask.to(wav_16k_tensor.device),
+ "output_layer": 9, # layer 9
+ }
+ with torch.no_grad():
+ logits = hmodel.extract_features(**inputs)
+ feats = hmodel.final_proj(logits[0])
+ return feats.transpose(1, 2)
+
+
+def get_content(cmodel, y):
+ with torch.no_grad():
+ c = cmodel.extract_features(y.squeeze(1))[0]
+ c = c.transpose(1, 2)
+ return c
+
+
+
+def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
+ assert os.path.isfile(checkpoint_path)
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
+ iteration = checkpoint_dict['iteration']
+ learning_rate = checkpoint_dict['learning_rate']
+ if optimizer is not None and not skip_optimizer:
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
+ saved_state_dict = checkpoint_dict['model']
+ if hasattr(model, 'module'):
+ state_dict = model.module.state_dict()
+ else:
+ state_dict = model.state_dict()
+ new_state_dict = {}
+ for k, v in state_dict.items():
+ try:
+ # assert "dec" in k or "disc" in k
+ # print("load", k)
+ new_state_dict[k] = saved_state_dict[k]
+ assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
+ except:
+ print("error, %s is not in the checkpoint" % k)
+ logger.info("%s is not in the checkpoint" % k)
+ new_state_dict[k] = v
+ if hasattr(model, 'module'):
+ model.module.load_state_dict(new_state_dict)
+ else:
+ model.load_state_dict(new_state_dict)
+ print("load ")
+ logger.info("Loaded checkpoint '{}' (iteration {})".format(
+ checkpoint_path, iteration))
+ return model, optimizer, learning_rate, iteration
+
+
+def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path, val_steps, current_step):
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
+ iteration, checkpoint_path))
+ if hasattr(model, 'module'):
+ state_dict = model.module.state_dict()
+ else:
+ state_dict = model.state_dict()
+ torch.save({'model': state_dict,
+ 'iteration': iteration,
+ 'optimizer': optimizer.state_dict(),
+ 'learning_rate': learning_rate}, checkpoint_path)
+ if current_step >= val_steps * 3:
+ to_del_ckptname = checkpoint_path.replace(str(current_step), str(current_step - val_steps * 3))
+ if os.path.exists(to_del_ckptname):
+ os.remove(to_del_ckptname)
+ print("Removing ", to_del_ckptname)
+
+
+def clean_checkpoints(path_to_models='logs/48k/', n_ckpts_to_keep=2, sort_by_time=True):
+ """Freeing up space by deleting saved ckpts
+
+ Arguments:
+ path_to_models -- Path to the model directory
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
+ sort_by_time -- True -> chronologically delete ckpts
+ False -> lexicographically delete ckpts
+ """
+ ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
+ name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
+ time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
+ sort_key = time_key if sort_by_time else name_key
+ x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
+ to_del = [os.path.join(path_to_models, fn) for fn in
+ (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
+ del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
+ del_routine = lambda x: [os.remove(x), del_info(x)]
+ rs = [del_routine(fn) for fn in to_del]
+
+def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
+ for k, v in scalars.items():
+ writer.add_scalar(k, v, global_step)
+ for k, v in histograms.items():
+ writer.add_histogram(k, v, global_step)
+ for k, v in images.items():
+ writer.add_image(k, v, global_step, dataformats='HWC')
+ for k, v in audios.items():
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
+
+
+def latest_checkpoint_path(dir_path, regex="G_*.pth"):
+ f_list = glob.glob(os.path.join(dir_path, regex))
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
+ x = f_list[-1]
+ print(x)
+ return x
+
+
+def plot_spectrogram_to_numpy(spectrogram):
+ global MATPLOTLIB_FLAG
+ if not MATPLOTLIB_FLAG:
+ import matplotlib
+ matplotlib.use("Agg")
+ MATPLOTLIB_FLAG = True
+ mpl_logger = logging.getLogger('matplotlib')
+ mpl_logger.setLevel(logging.WARNING)
+ import matplotlib.pylab as plt
+ import numpy as np
+
+ fig, ax = plt.subplots(figsize=(10,2))
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
+ interpolation='none')
+ plt.colorbar(im, ax=ax)
+ plt.xlabel("Frames")
+ plt.ylabel("Channels")
+ plt.tight_layout()
+
+ fig.canvas.draw()
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
+ plt.close()
+ return data
+
+
+def plot_alignment_to_numpy(alignment, info=None):
+ global MATPLOTLIB_FLAG
+ if not MATPLOTLIB_FLAG:
+ import matplotlib
+ matplotlib.use("Agg")
+ MATPLOTLIB_FLAG = True
+ mpl_logger = logging.getLogger('matplotlib')
+ mpl_logger.setLevel(logging.WARNING)
+ import matplotlib.pylab as plt
+ import numpy as np
+
+ fig, ax = plt.subplots(figsize=(6, 4))
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
+ interpolation='none')
+ fig.colorbar(im, ax=ax)
+ xlabel = 'Decoder timestep'
+ if info is not None:
+ xlabel += '\n\n' + info
+ plt.xlabel(xlabel)
+ plt.ylabel('Encoder timestep')
+ plt.tight_layout()
+
+ fig.canvas.draw()
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
+ plt.close()
+ return data
+
+
+def load_wav_to_torch(full_path):
+ sampling_rate, data = read(full_path)
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
+
+
+def load_filepaths_and_text(filename, split="|"):
+ with open(filename, encoding='utf-8') as f:
+ filepaths_and_text = [line.strip().split(split) for line in f]
+ return filepaths_and_text
+
+
+def get_hparams(init=True):
+ parser = argparse.ArgumentParser()
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
+ help='JSON file for configuration')
+ parser.add_argument('-m', '--model', type=str, required=True,
+ help='Model name')
+
+ args = parser.parse_args()
+ model_dir = os.path.join("./logs", args.model)
+
+ if not os.path.exists(model_dir):
+ os.makedirs(model_dir)
+
+ config_path = args.config
+ config_save_path = os.path.join(model_dir, "config.json")
+ if init:
+ with open(config_path, "r") as f:
+ data = f.read()
+ with open(config_save_path, "w") as f:
+ f.write(data)
+ else:
+ with open(config_save_path, "r") as f:
+ data = f.read()
+ config = json.loads(data)
+
+ hparams = HParams(**config)
+ hparams.model_dir = model_dir
+ return hparams
+
+
+def get_hparams_from_dir(model_dir):
+ config_save_path = os.path.join(model_dir, "config.json")
+ with open(config_save_path, "r") as f:
+ data = f.read()
+ config = json.loads(data)
+
+ hparams =HParams(**config)
+ hparams.model_dir = model_dir
+ return hparams
+
+
+def get_hparams_from_file(config_path):
+ with open(config_path, "r") as f:
+ data = f.read()
+ config = json.loads(data)
+
+ hparams =HParams(**config)
+ return hparams
+
+
+def check_git_hash(model_dir):
+ source_dir = os.path.dirname(os.path.realpath(__file__))
+ if not os.path.exists(os.path.join(source_dir, ".git")):
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
+ source_dir
+ ))
+ return
+
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
+
+ path = os.path.join(model_dir, "githash")
+ if os.path.exists(path):
+ saved_hash = open(path).read()
+ if saved_hash != cur_hash:
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
+ saved_hash[:8], cur_hash[:8]))
+ else:
+ open(path, "w").write(cur_hash)
+
+
+def get_logger(model_dir, filename="train.log"):
+ global logger
+ logger = logging.getLogger(os.path.basename(model_dir))
+ logger.setLevel(logging.DEBUG)
+
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
+ if not os.path.exists(model_dir):
+ os.makedirs(model_dir)
+ h = logging.FileHandler(os.path.join(model_dir, filename))
+ h.setLevel(logging.DEBUG)
+ h.setFormatter(formatter)
+ logger.addHandler(h)
+ return logger
+
+
+def repeat_expand_2d(content, target_len):
+ # content : [h, t]
+
+ src_len = content.shape[-1]
+ target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
+ temp = torch.arange(src_len+1) * target_len / src_len
+ current_pos = 0
+ for i in range(target_len):
+ if i < temp[current_pos+1]:
+ target[:, i] = content[:, current_pos]
+ else:
+ current_pos += 1
+ target[:, i] = content[:, current_pos]
+
+ return target
+
+
+class HParams():
+ def __init__(self, **kwargs):
+ for k, v in kwargs.items():
+ if type(v) == dict:
+ v = HParams(**v)
+ self[k] = v
+
+ def keys(self):
+ return self.__dict__.keys()
+
+ def items(self):
+ return self.__dict__.items()
+
+ def values(self):
+ return self.__dict__.values()
+
+ def __len__(self):
+ return len(self.__dict__)
+
+ def __getitem__(self, key):
+ return getattr(self, key)
+
+ def __setitem__(self, key, value):
+ return setattr(self, key, value)
+
+ def __contains__(self, key):
+ return key in self.__dict__
+
+ def __repr__(self):
+ return self.__dict__.__repr__()
+
diff --git a/vdecoder/__init__.py b/vdecoder/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/vdecoder/__pycache__/__init__.cpython-38.pyc b/vdecoder/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e732d73b59b9d5e1700edfed38529991a54a0ec9
Binary files /dev/null and b/vdecoder/__pycache__/__init__.cpython-38.pyc differ
diff --git a/vdecoder/hifigan/__pycache__/env.cpython-38.pyc b/vdecoder/hifigan/__pycache__/env.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ee224c701d3b3952697cc95f980db4c84f866749
Binary files /dev/null and b/vdecoder/hifigan/__pycache__/env.cpython-38.pyc differ
diff --git a/vdecoder/hifigan/__pycache__/models.cpython-38.pyc b/vdecoder/hifigan/__pycache__/models.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d340fd14be840660c7b1ca96111d4e22889a6122
Binary files /dev/null and b/vdecoder/hifigan/__pycache__/models.cpython-38.pyc differ
diff --git a/vdecoder/hifigan/__pycache__/utils.cpython-38.pyc b/vdecoder/hifigan/__pycache__/utils.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4b62a32bd6298bbae4ab092909e3af3c3545768c
Binary files /dev/null and b/vdecoder/hifigan/__pycache__/utils.cpython-38.pyc differ
diff --git a/vdecoder/hifigan/env.py b/vdecoder/hifigan/env.py
new file mode 100644
index 0000000000000000000000000000000000000000..2bdbc95d4f7a8bad8fd4f5eef657e2b51d946056
--- /dev/null
+++ b/vdecoder/hifigan/env.py
@@ -0,0 +1,15 @@
+import os
+import shutil
+
+
+class AttrDict(dict):
+ def __init__(self, *args, **kwargs):
+ super(AttrDict, self).__init__(*args, **kwargs)
+ self.__dict__ = self
+
+
+def build_env(config, config_name, path):
+ t_path = os.path.join(path, config_name)
+ if config != t_path:
+ os.makedirs(path, exist_ok=True)
+ shutil.copyfile(config, os.path.join(path, config_name))
diff --git a/vdecoder/hifigan/models.py b/vdecoder/hifigan/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..9747301f350bb269e62601017fe4633ce271b27e
--- /dev/null
+++ b/vdecoder/hifigan/models.py
@@ -0,0 +1,503 @@
+import os
+import json
+from .env import AttrDict
+import numpy as np
+import torch
+import torch.nn.functional as F
+import torch.nn as nn
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from .utils import init_weights, get_padding
+
+LRELU_SLOPE = 0.1
+
+
+def load_model(model_path, device='cuda'):
+ config_file = os.path.join(os.path.split(model_path)[0], 'config.json')
+ with open(config_file) as f:
+ data = f.read()
+
+ global h
+ json_config = json.loads(data)
+ h = AttrDict(json_config)
+
+ generator = Generator(h).to(device)
+
+ cp_dict = torch.load(model_path)
+ generator.load_state_dict(cp_dict['generator'])
+ generator.eval()
+ generator.remove_weight_norm()
+ del cp_dict
+ return generator, h
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super(ResBlock1, self).__init__()
+ self.h = h
+ self.convs1 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2])))
+ ])
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1)))
+ ])
+ self.convs2.apply(init_weights)
+
+ def forward(self, x):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ xt = c2(xt)
+ x = xt + x
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
+ super(ResBlock2, self).__init__()
+ self.h = h
+ self.convs = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1])))
+ ])
+ self.convs.apply(init_weights)
+
+ def forward(self, x):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ xt = c(xt)
+ x = xt + x
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+def padDiff(x):
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
+
+class SineGen(torch.nn.Module):
+ """ Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(self, samp_rate, harmonic_num=0,
+ sine_amp=0.1, noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+ self.flag_for_pulse = flag_for_pulse
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
+ return uv
+
+ def _f02sine(self, f0_values):
+ """ f0_values: (batchsize, length, dim)
+ where dim indicates fundamental tone and overtones
+ """
+ # convert to F0 in rad. The interger part n can be ignored
+ # because 2 * np.pi * n doesn't affect phase
+ rad_values = (f0_values / self.sampling_rate) % 1
+
+ # initial phase noise (no noise for fundamental component)
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
+ device=f0_values.device)
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
+ if not self.flag_for_pulse:
+ # for normal case
+
+ # To prevent torch.cumsum numerical overflow,
+ # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
+ # Buffer tmp_over_one_idx indicates the time step to add -1.
+ # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
+ tmp_over_one = torch.cumsum(rad_values, 1) % 1
+ tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+
+ sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1)
+ * 2 * np.pi)
+ else:
+ # If necessary, make sure that the first time step of every
+ # voiced segments is sin(pi) or cos(0)
+ # This is used for pulse-train generation
+
+ # identify the last time step in unvoiced segments
+ uv = self._f02uv(f0_values)
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
+ uv_1[:, -1, :] = 1
+ u_loc = (uv < 1) * (uv_1 > 0)
+
+ # get the instantanouse phase
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
+ # different batch needs to be processed differently
+ for idx in range(f0_values.shape[0]):
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
+ # stores the accumulation of i.phase within
+ # each voiced segments
+ tmp_cumsum[idx, :, :] = 0
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
+
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
+ # within the previous voiced segment.
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
+
+ # get the sines
+ sines = torch.cos(i_phase * 2 * np.pi)
+ return sines
+
+ def forward(self, f0):
+ """ sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
+ device=f0.device)
+ # fundamental component
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
+
+ # generate sine waveforms
+ sine_waves = self._f02sine(fn) * self.sine_amp
+
+ # generate uv signal
+ # uv = torch.ones(f0.shape)
+ # uv = uv * (f0 > self.voiced_threshold)
+ uv = self._f02uv(f0)
+
+ # noise: for unvoiced should be similar to sine_amp
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
+ # . for voiced regions is self.noise_std
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+
+ # first: set the unvoiced part to 0 by uv
+ # then: additive noise
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """ SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
+ sine_amp, add_noise_std, voiced_threshod)
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x):
+ """
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ """
+ # source for harmonic branch
+ sine_wavs, uv, _ = self.l_sin_gen(x)
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+
+ # source for noise branch, in the same shape as uv
+ noise = torch.randn_like(uv) * self.sine_amp / 3
+ return sine_merge, noise, uv
+
+
+class Generator(torch.nn.Module):
+ def __init__(self, h):
+ super(Generator, self).__init__()
+ self.h = h
+
+ self.num_kernels = len(h["resblock_kernel_sizes"])
+ self.num_upsamples = len(h["upsample_rates"])
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"]))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=h["sampling_rate"],
+ harmonic_num=8)
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3))
+ resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])):
+ c_cur = h["upsample_initial_channel"] // (2 ** (i + 1))
+ self.ups.append(weight_norm(
+ ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)),
+ k, u, padding=(k - u) // 2)))
+ if i + 1 < len(h["upsample_rates"]): #
+ stride_f0 = np.prod(h["upsample_rates"][i + 1:])
+ self.noise_convs.append(Conv1d(
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = h["upsample_initial_channel"] // (2 ** (i + 1))
+ for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])):
+ self.resblocks.append(resblock(h, ch, k, d))
+
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
+ self.ups.apply(init_weights)
+ self.conv_post.apply(init_weights)
+ self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1)
+
+ def forward(self, x, f0, g=None):
+ # print(1,x.shape,f0.shape,f0[:, None].shape)
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
+ # print(2,f0.shape)
+ har_source, noi_source, uv = self.m_source(f0)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ x = x + self.cond(g)
+ # print(124,x.shape,har_source.shape)
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ # print(3,x.shape)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ # print(4,x_source.shape,har_source.shape,x.shape)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ print('Removing weight norm...')
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+ remove_weight_norm(self.conv_pre)
+ remove_weight_norm(self.conv_post)
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
+ ])
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, periods=None):
+ super(MultiPeriodDiscriminator, self).__init__()
+ self.periods = periods if periods is not None else [2, 3, 5, 7, 11]
+ self.discriminators = nn.ModuleList()
+ for period in self.periods:
+ self.discriminators.append(DiscriminatorP(period))
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv1d(1, 128, 15, 1, padding=7)),
+ norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
+ norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
+ norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ])
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiScaleDiscriminator(torch.nn.Module):
+ def __init__(self):
+ super(MultiScaleDiscriminator, self).__init__()
+ self.discriminators = nn.ModuleList([
+ DiscriminatorS(use_spectral_norm=True),
+ DiscriminatorS(),
+ DiscriminatorS(),
+ ])
+ self.meanpools = nn.ModuleList([
+ AvgPool1d(4, 2, padding=2),
+ AvgPool1d(4, 2, padding=2)
+ ])
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ if i != 0:
+ y = self.meanpools[i - 1](y)
+ y_hat = self.meanpools[i - 1](y_hat)
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+def feature_loss(fmap_r, fmap_g):
+ loss = 0
+ for dr, dg in zip(fmap_r, fmap_g):
+ for rl, gl in zip(dr, dg):
+ loss += torch.mean(torch.abs(rl - gl))
+
+ return loss * 2
+
+
+def discriminator_loss(disc_real_outputs, disc_generated_outputs):
+ loss = 0
+ r_losses = []
+ g_losses = []
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
+ r_loss = torch.mean((1 - dr) ** 2)
+ g_loss = torch.mean(dg ** 2)
+ loss += (r_loss + g_loss)
+ r_losses.append(r_loss.item())
+ g_losses.append(g_loss.item())
+
+ return loss, r_losses, g_losses
+
+
+def generator_loss(disc_outputs):
+ loss = 0
+ gen_losses = []
+ for dg in disc_outputs:
+ l = torch.mean((1 - dg) ** 2)
+ gen_losses.append(l)
+ loss += l
+
+ return loss, gen_losses
diff --git a/vdecoder/hifigan/nvSTFT.py b/vdecoder/hifigan/nvSTFT.py
new file mode 100644
index 0000000000000000000000000000000000000000..88597d62a505715091f9ba62d38bf0a85a31b95a
--- /dev/null
+++ b/vdecoder/hifigan/nvSTFT.py
@@ -0,0 +1,111 @@
+import math
+import os
+os.environ["LRU_CACHE_CAPACITY"] = "3"
+import random
+import torch
+import torch.utils.data
+import numpy as np
+import librosa
+from librosa.util import normalize
+from librosa.filters import mel as librosa_mel_fn
+from scipy.io.wavfile import read
+import soundfile as sf
+
+def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
+ sampling_rate = None
+ try:
+ data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
+ except Exception as ex:
+ print(f"'{full_path}' failed to load.\nException:")
+ print(ex)
+ if return_empty_on_exception:
+ return [], sampling_rate or target_sr or 32000
+ else:
+ raise Exception(ex)
+
+ if len(data.shape) > 1:
+ data = data[:, 0]
+ assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
+
+ if np.issubdtype(data.dtype, np.integer): # if audio data is type int
+ max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
+ else: # if audio data is type fp32
+ max_mag = max(np.amax(data), -np.amin(data))
+ max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
+
+ data = torch.FloatTensor(data.astype(np.float32))/max_mag
+
+ if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
+ return [], sampling_rate or target_sr or 32000
+ if target_sr is not None and sampling_rate != target_sr:
+ data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
+ sampling_rate = target_sr
+
+ return data, sampling_rate
+
+def dynamic_range_compression(x, C=1, clip_val=1e-5):
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
+
+def dynamic_range_decompression(x, C=1):
+ return np.exp(x) / C
+
+def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
+ return torch.log(torch.clamp(x, min=clip_val) * C)
+
+def dynamic_range_decompression_torch(x, C=1):
+ return torch.exp(x) / C
+
+class STFT():
+ def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
+ self.target_sr = sr
+
+ self.n_mels = n_mels
+ self.n_fft = n_fft
+ self.win_size = win_size
+ self.hop_length = hop_length
+ self.fmin = fmin
+ self.fmax = fmax
+ self.clip_val = clip_val
+ self.mel_basis = {}
+ self.hann_window = {}
+
+ def get_mel(self, y, center=False):
+ sampling_rate = self.target_sr
+ n_mels = self.n_mels
+ n_fft = self.n_fft
+ win_size = self.win_size
+ hop_length = self.hop_length
+ fmin = self.fmin
+ fmax = self.fmax
+ clip_val = self.clip_val
+
+ if torch.min(y) < -1.:
+ print('min value is ', torch.min(y))
+ if torch.max(y) > 1.:
+ print('max value is ', torch.max(y))
+
+ if fmax not in self.mel_basis:
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
+ self.mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
+ self.hann_window[str(y.device)] = torch.hann_window(self.win_size).to(y.device)
+
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_length)/2), int((n_fft-hop_length)/2)), mode='reflect')
+ y = y.squeeze(1)
+
+ spec = torch.stft(y, n_fft, hop_length=hop_length, win_length=win_size, window=self.hann_window[str(y.device)],
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
+ # print(111,spec)
+ spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
+ # print(222,spec)
+ spec = torch.matmul(self.mel_basis[str(fmax)+'_'+str(y.device)], spec)
+ # print(333,spec)
+ spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
+ # print(444,spec)
+ return spec
+
+ def __call__(self, audiopath):
+ audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
+ spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
+ return spect
+
+stft = STFT()
diff --git a/vdecoder/hifigan/utils.py b/vdecoder/hifigan/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..9c93c996d3cc73c30d71c1fc47056e4230f35c0f
--- /dev/null
+++ b/vdecoder/hifigan/utils.py
@@ -0,0 +1,68 @@
+import glob
+import os
+import matplotlib
+import torch
+from torch.nn.utils import weight_norm
+# matplotlib.use("Agg")
+import matplotlib.pylab as plt
+
+
+def plot_spectrogram(spectrogram):
+ fig, ax = plt.subplots(figsize=(10, 2))
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
+ interpolation='none')
+ plt.colorbar(im, ax=ax)
+
+ fig.canvas.draw()
+ plt.close()
+
+ return fig
+
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def apply_weight_norm(m):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ weight_norm(m)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size*dilation - dilation)/2)
+
+
+def load_checkpoint(filepath, device):
+ assert os.path.isfile(filepath)
+ print("Loading '{}'".format(filepath))
+ checkpoint_dict = torch.load(filepath, map_location=device)
+ print("Complete.")
+ return checkpoint_dict
+
+
+def save_checkpoint(filepath, obj):
+ print("Saving checkpoint to {}".format(filepath))
+ torch.save(obj, filepath)
+ print("Complete.")
+
+
+def del_old_checkpoints(cp_dir, prefix, n_models=2):
+ pattern = os.path.join(cp_dir, prefix + '????????')
+ cp_list = glob.glob(pattern) # get checkpoint paths
+ cp_list = sorted(cp_list)# sort by iter
+ if len(cp_list) > n_models: # if more than n_models models are found
+ for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models
+ open(cp, 'w').close()# empty file contents
+ os.unlink(cp)# delete file (move to trash when using Colab)
+
+
+def scan_checkpoint(cp_dir, prefix):
+ pattern = os.path.join(cp_dir, prefix + '????????')
+ cp_list = glob.glob(pattern)
+ if len(cp_list) == 0:
+ return None
+ return sorted(cp_list)[-1]
+