Spaces:
Runtime error
Runtime error
Upload 3 files
Browse filesadd app & requirements
- README.md +14 -1
- app.py +52 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -10,4 +10,17 @@ pinned: false
|
|
10 |
license: cc-by-4.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: cc-by-4.0
|
11 |
---
|
12 |
|
13 |
+
|
14 |
+
|
15 |
+
# demo chatbot of OpenAssit
|
16 |
+
models trained by [Rallio67](https://huggingface.co/Rallio67/chip_1.4B_instruct_alpha)
|
17 |
+
|
18 |
+
|
19 |
+
**note:**
|
20 |
+
|
21 |
+
The model used in this program is still being tested, and this program is only used to show how it works, not to be used for real production
|
22 |
+
|
23 |
+
# Reference
|
24 |
+
[1]. https://github.com/LAION-AI/Open-Assistant
|
25 |
+
|
26 |
+
|
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
model_name = "chip_1.4B_instruct_alpha"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
|
9 |
+
chip_map= {
|
10 |
+
'gpt_neox.embed_in': 0,
|
11 |
+
'gpt_neox.layers': 0,
|
12 |
+
'gpt_neox.final_layer_norm': 0,
|
13 |
+
'embed_out': 0
|
14 |
+
}
|
15 |
+
# model = AutoModelForCausalLM.from_pretrained(name, device_map=chip_map, torch_dtype=torch.float16, load_in_8bit=True)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).half()
|
17 |
+
|
18 |
+
|
19 |
+
def predict(input, history=[], MAX_NEW_TOKENS = 500):
|
20 |
+
text = "User: " + input + "\n\nChip: "
|
21 |
+
new_user_input_ids = tokenizer(text, return_tensors="pt").input_ids
|
22 |
+
# bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1).to("cuda")
|
23 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
24 |
+
|
25 |
+
generated_ids = model.generate(bot_input_ids,
|
26 |
+
max_length=MAX_NEW_TOKENS, pad_token_id=tokenizer.eos_token_id,
|
27 |
+
do_sample=True,
|
28 |
+
top_p=0.95, temperature=0.5, penalty_alpha=0.6, top_k=4, repetition_penalty=1.03,
|
29 |
+
num_return_sequences=1)
|
30 |
+
|
31 |
+
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
32 |
+
history = generated_ids.tolist()
|
33 |
+
|
34 |
+
# convert to list of user & bot response
|
35 |
+
response = response.split("\n\n")
|
36 |
+
response_pairs = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]
|
37 |
+
return response_pairs, history
|
38 |
+
|
39 |
+
|
40 |
+
with gr.Blocks() as demo:
|
41 |
+
chatbot = gr.Chatbot()
|
42 |
+
state = gr.State([])
|
43 |
+
|
44 |
+
with gr.Row():
|
45 |
+
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
|
46 |
+
|
47 |
+
txt.submit(predict, [txt, state], [chatbot, state])
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
# demo.launch(debug=True, server_name="0.0.0.0", server_port=9991)
|
52 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
accelerate
|
3 |
+
bitsandbytes
|
4 |
+
requests
|