|
from typing import *
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
import torch.linalg as linalg
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
def make_sparse(t: torch.Tensor, sparsity=0.95):
|
|
abs_t = torch.abs(t)
|
|
np_array = abs_t.detach().cpu().numpy()
|
|
quan = float(np.quantile(np_array, sparsity))
|
|
sparse_t = t.masked_fill(abs_t < quan, 0)
|
|
return sparse_t
|
|
|
|
|
|
def extract_conv(
|
|
weight: Union[torch.Tensor, nn.Parameter],
|
|
mode = 'fixed',
|
|
mode_param = 0,
|
|
device = 'cpu',
|
|
is_cp = False,
|
|
) -> Tuple[nn.Parameter, nn.Parameter]:
|
|
weight = weight.to(device)
|
|
out_ch, in_ch, kernel_size, _ = weight.shape
|
|
|
|
U, S, Vh = linalg.svd(weight.reshape(out_ch, -1))
|
|
|
|
if mode=='fixed':
|
|
lora_rank = mode_param
|
|
elif mode=='threshold':
|
|
assert mode_param>=0
|
|
lora_rank = torch.sum(S>mode_param)
|
|
elif mode=='ratio':
|
|
assert 1>=mode_param>=0
|
|
min_s = torch.max(S)*mode_param
|
|
lora_rank = torch.sum(S>min_s)
|
|
elif mode=='quantile' or mode=='percentile':
|
|
assert 1>=mode_param>=0
|
|
s_cum = torch.cumsum(S, dim=0)
|
|
min_cum_sum = mode_param * torch.sum(S)
|
|
lora_rank = torch.sum(s_cum<min_cum_sum)
|
|
else:
|
|
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
|
|
lora_rank = max(1, lora_rank)
|
|
lora_rank = min(out_ch, in_ch, lora_rank)
|
|
if lora_rank>=out_ch/2 and not is_cp:
|
|
return weight, 'full'
|
|
|
|
U = U[:, :lora_rank]
|
|
S = S[:lora_rank]
|
|
U = U @ torch.diag(S)
|
|
Vh = Vh[:lora_rank, :]
|
|
|
|
diff = (weight - (U @ Vh).reshape(out_ch, in_ch, kernel_size, kernel_size)).detach()
|
|
extract_weight_A = Vh.reshape(lora_rank, in_ch, kernel_size, kernel_size).detach()
|
|
extract_weight_B = U.reshape(out_ch, lora_rank, 1, 1).detach()
|
|
del U, S, Vh, weight
|
|
return (extract_weight_A, extract_weight_B, diff), 'low rank'
|
|
|
|
|
|
def extract_linear(
|
|
weight: Union[torch.Tensor, nn.Parameter],
|
|
mode = 'fixed',
|
|
mode_param = 0,
|
|
device = 'cpu',
|
|
) -> Tuple[nn.Parameter, nn.Parameter]:
|
|
weight = weight.to(device)
|
|
out_ch, in_ch = weight.shape
|
|
|
|
U, S, Vh = linalg.svd(weight)
|
|
|
|
if mode=='fixed':
|
|
lora_rank = mode_param
|
|
elif mode=='threshold':
|
|
assert mode_param>=0
|
|
lora_rank = torch.sum(S>mode_param)
|
|
elif mode=='ratio':
|
|
assert 1>=mode_param>=0
|
|
min_s = torch.max(S)*mode_param
|
|
lora_rank = torch.sum(S>min_s)
|
|
elif mode=='quantile' or mode=='percentile':
|
|
assert 1>=mode_param>=0
|
|
s_cum = torch.cumsum(S, dim=0)
|
|
min_cum_sum = mode_param * torch.sum(S)
|
|
lora_rank = torch.sum(s_cum<min_cum_sum)
|
|
else:
|
|
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
|
|
lora_rank = max(1, lora_rank)
|
|
lora_rank = min(out_ch, in_ch, lora_rank)
|
|
if lora_rank>=out_ch/2:
|
|
return weight, 'full'
|
|
|
|
U = U[:, :lora_rank]
|
|
S = S[:lora_rank]
|
|
U = U @ torch.diag(S)
|
|
Vh = Vh[:lora_rank, :]
|
|
|
|
diff = (weight - U @ Vh).detach()
|
|
extract_weight_A = Vh.reshape(lora_rank, in_ch).detach()
|
|
extract_weight_B = U.reshape(out_ch, lora_rank).detach()
|
|
del U, S, Vh, weight
|
|
return (extract_weight_A, extract_weight_B, diff), 'low rank'
|
|
|
|
|
|
def extract_diff(
|
|
base_model,
|
|
db_model,
|
|
mode = 'fixed',
|
|
linear_mode_param = 0,
|
|
conv_mode_param = 0,
|
|
extract_device = 'cpu',
|
|
use_bias = False,
|
|
sparsity = 0.98,
|
|
small_conv = True
|
|
):
|
|
UNET_TARGET_REPLACE_MODULE = [
|
|
"Transformer2DModel",
|
|
"Attention",
|
|
"ResnetBlock2D",
|
|
"Downsample2D",
|
|
"Upsample2D"
|
|
]
|
|
UNET_TARGET_REPLACE_NAME = [
|
|
"conv_in",
|
|
"conv_out",
|
|
"time_embedding.linear_1",
|
|
"time_embedding.linear_2",
|
|
]
|
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
|
LORA_PREFIX_UNET = 'lora_unet'
|
|
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
|
|
def make_state_dict(
|
|
prefix,
|
|
root_module: torch.nn.Module,
|
|
target_module: torch.nn.Module,
|
|
target_replace_modules,
|
|
target_replace_names = []
|
|
):
|
|
loras = {}
|
|
temp = {}
|
|
temp_name = {}
|
|
|
|
for name, module in root_module.named_modules():
|
|
if module.__class__.__name__ in target_replace_modules:
|
|
temp[name] = {}
|
|
for child_name, child_module in module.named_modules():
|
|
if child_module.__class__.__name__ not in {'Linear', 'Conv2d'}:
|
|
continue
|
|
temp[name][child_name] = child_module.weight
|
|
elif name in target_replace_names:
|
|
temp_name[name] = module.weight
|
|
|
|
for name, module in tqdm(list(target_module.named_modules())):
|
|
if name in temp:
|
|
weights = temp[name]
|
|
for child_name, child_module in module.named_modules():
|
|
lora_name = prefix + '.' + name + '.' + child_name
|
|
lora_name = lora_name.replace('.', '_')
|
|
layer = child_module.__class__.__name__
|
|
if layer in {'Linear', 'Conv2d'}:
|
|
root_weight = child_module.weight
|
|
if torch.allclose(root_weight, weights[child_name]):
|
|
continue
|
|
|
|
if layer == 'Linear':
|
|
weight, decompose_mode = extract_linear(
|
|
(child_module.weight - weights[child_name]),
|
|
mode,
|
|
linear_mode_param,
|
|
device = extract_device,
|
|
)
|
|
if decompose_mode == 'low rank':
|
|
extract_a, extract_b, diff = weight
|
|
elif layer == 'Conv2d':
|
|
is_linear = (child_module.weight.shape[2] == 1
|
|
and child_module.weight.shape[3] == 1)
|
|
weight, decompose_mode = extract_conv(
|
|
(child_module.weight - weights[child_name]),
|
|
mode,
|
|
linear_mode_param if is_linear else conv_mode_param,
|
|
device = extract_device,
|
|
)
|
|
if decompose_mode == 'low rank':
|
|
extract_a, extract_b, diff = weight
|
|
if small_conv and not is_linear and decompose_mode == 'low rank':
|
|
dim = extract_a.size(0)
|
|
(extract_c, extract_a, _), _ = extract_conv(
|
|
extract_a.transpose(0, 1),
|
|
'fixed', dim,
|
|
extract_device, True
|
|
)
|
|
extract_a = extract_a.transpose(0, 1)
|
|
extract_c = extract_c.transpose(0, 1)
|
|
loras[f'{lora_name}.lora_mid.weight'] = extract_c.detach().cpu().contiguous().half()
|
|
diff = child_module.weight - torch.einsum(
|
|
'i j k l, j r, p i -> p r k l',
|
|
extract_c, extract_a.flatten(1, -1), extract_b.flatten(1, -1)
|
|
).detach().cpu().contiguous()
|
|
del extract_c
|
|
else:
|
|
continue
|
|
if decompose_mode == 'low rank':
|
|
loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half()
|
|
loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half()
|
|
loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half()
|
|
if use_bias:
|
|
diff = diff.detach().cpu().reshape(extract_b.size(0), -1)
|
|
sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce()
|
|
|
|
indices = sparse_diff.indices().to(torch.int16)
|
|
values = sparse_diff.values().half()
|
|
loras[f'{lora_name}.bias_indices'] = indices
|
|
loras[f'{lora_name}.bias_values'] = values
|
|
loras[f'{lora_name}.bias_size'] = torch.tensor(diff.shape).to(torch.int16)
|
|
del extract_a, extract_b, diff
|
|
elif decompose_mode == 'full':
|
|
loras[f'{lora_name}.diff'] = weight.detach().cpu().contiguous().half()
|
|
else:
|
|
raise NotImplementedError
|
|
elif name in temp_name:
|
|
weights = temp_name[name]
|
|
lora_name = prefix + '.' + name
|
|
lora_name = lora_name.replace('.', '_')
|
|
layer = module.__class__.__name__
|
|
|
|
if layer in {'Linear', 'Conv2d'}:
|
|
root_weight = module.weight
|
|
if torch.allclose(root_weight, weights):
|
|
continue
|
|
|
|
if layer == 'Linear':
|
|
weight, decompose_mode = extract_linear(
|
|
(root_weight - weights),
|
|
mode,
|
|
linear_mode_param,
|
|
device = extract_device,
|
|
)
|
|
if decompose_mode == 'low rank':
|
|
extract_a, extract_b, diff = weight
|
|
elif layer == 'Conv2d':
|
|
is_linear = (
|
|
root_weight.shape[2] == 1
|
|
and root_weight.shape[3] == 1
|
|
)
|
|
weight, decompose_mode = extract_conv(
|
|
(root_weight - weights),
|
|
mode,
|
|
linear_mode_param if is_linear else conv_mode_param,
|
|
device = extract_device,
|
|
)
|
|
if decompose_mode == 'low rank':
|
|
extract_a, extract_b, diff = weight
|
|
if small_conv and not is_linear and decompose_mode == 'low rank':
|
|
dim = extract_a.size(0)
|
|
(extract_c, extract_a, _), _ = extract_conv(
|
|
extract_a.transpose(0, 1),
|
|
'fixed', dim,
|
|
extract_device, True
|
|
)
|
|
extract_a = extract_a.transpose(0, 1)
|
|
extract_c = extract_c.transpose(0, 1)
|
|
loras[f'{lora_name}.lora_mid.weight'] = extract_c.detach().cpu().contiguous().half()
|
|
diff = root_weight - torch.einsum(
|
|
'i j k l, j r, p i -> p r k l',
|
|
extract_c, extract_a.flatten(1, -1), extract_b.flatten(1, -1)
|
|
).detach().cpu().contiguous()
|
|
del extract_c
|
|
else:
|
|
continue
|
|
if decompose_mode == 'low rank':
|
|
loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half()
|
|
loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half()
|
|
loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half()
|
|
if use_bias:
|
|
diff = diff.detach().cpu().reshape(extract_b.size(0), -1)
|
|
sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce()
|
|
|
|
indices = sparse_diff.indices().to(torch.int16)
|
|
values = sparse_diff.values().half()
|
|
loras[f'{lora_name}.bias_indices'] = indices
|
|
loras[f'{lora_name}.bias_values'] = values
|
|
loras[f'{lora_name}.bias_size'] = torch.tensor(diff.shape).to(torch.int16)
|
|
del extract_a, extract_b, diff
|
|
elif decompose_mode == 'full':
|
|
loras[f'{lora_name}.diff'] = weight.detach().cpu().contiguous().half()
|
|
else:
|
|
raise NotImplementedError
|
|
return loras
|
|
|
|
text_encoder_loras = make_state_dict(
|
|
LORA_PREFIX_TEXT_ENCODER,
|
|
base_model[0], db_model[0],
|
|
TEXT_ENCODER_TARGET_REPLACE_MODULE
|
|
)
|
|
|
|
unet_loras = make_state_dict(
|
|
LORA_PREFIX_UNET,
|
|
base_model[2], db_model[2],
|
|
UNET_TARGET_REPLACE_MODULE,
|
|
UNET_TARGET_REPLACE_NAME
|
|
)
|
|
print(len(text_encoder_loras), len(unet_loras))
|
|
return text_encoder_loras|unet_loras
|
|
|
|
|
|
def get_module(
|
|
lyco_state_dict: Dict,
|
|
lora_name
|
|
):
|
|
if f'{lora_name}.lora_up.weight' in lyco_state_dict:
|
|
up = lyco_state_dict[f'{lora_name}.lora_up.weight']
|
|
down = lyco_state_dict[f'{lora_name}.lora_down.weight']
|
|
mid = lyco_state_dict.get(f'{lora_name}.lora_mid.weight', None)
|
|
alpha = lyco_state_dict.get(f'{lora_name}.alpha', None)
|
|
return 'locon', (up, down, mid, alpha)
|
|
elif f'{lora_name}.hada_w1_a' in lyco_state_dict:
|
|
w1a = lyco_state_dict[f'{lora_name}.hada_w1_a']
|
|
w1b = lyco_state_dict[f'{lora_name}.hada_w1_b']
|
|
w2a = lyco_state_dict[f'{lora_name}.hada_w2_a']
|
|
w2b = lyco_state_dict[f'{lora_name}.hada_w2_b']
|
|
t1 = lyco_state_dict.get(f'{lora_name}.hada_t1', None)
|
|
t2 = lyco_state_dict.get(f'{lora_name}.hada_t2', None)
|
|
alpha = lyco_state_dict.get(f'{lora_name}.alpha', None)
|
|
return 'hada', (w1a, w1b, w2a, w2b, t1, t2, alpha)
|
|
elif f'{lora_name}.weight' in lyco_state_dict:
|
|
weight = lyco_state_dict[f'{lora_name}.weight']
|
|
on_input = lyco_state_dict.get(f'{lora_name}.on_input', False)
|
|
return 'ia3', (weight, on_input)
|
|
elif (f'{lora_name}.lokr_w1' in lyco_state_dict
|
|
or f'{lora_name}.lokr_w1_a' in lyco_state_dict):
|
|
w1 = lyco_state_dict.get(f'{lora_name}.lokr_w1', None)
|
|
w1a = lyco_state_dict.get(f'{lora_name}.lokr_w1_a', None)
|
|
w1b = lyco_state_dict.get(f'{lora_name}.lokr_w1_b', None)
|
|
w2 = lyco_state_dict.get(f'{lora_name}.lokr_w2', None)
|
|
w2a = lyco_state_dict.get(f'{lora_name}.lokr_w2_a', None)
|
|
w2b = lyco_state_dict.get(f'{lora_name}.lokr_w2_b', None)
|
|
t1 = lyco_state_dict.get(f'{lora_name}.lokr_t1', None)
|
|
t2 = lyco_state_dict.get(f'{lora_name}.lokr_t2', None)
|
|
alpha = lyco_state_dict.get(f'{lora_name}.alpha', None)
|
|
return 'kron', (w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha)
|
|
elif f'{lora_name}.diff' in lyco_state_dict:
|
|
return 'full', lyco_state_dict[f'{lora_name}.diff']
|
|
else:
|
|
return 'None', ()
|
|
|
|
|
|
def cp_weight_from_conv(
|
|
up, down, mid
|
|
):
|
|
up = up.reshape(up.size(0), up.size(1))
|
|
down = down.reshape(down.size(0), down.size(1))
|
|
return torch.einsum('m n w h, i m, n j -> i j w h', mid, up, down)
|
|
|
|
def cp_weight(
|
|
wa, wb, t
|
|
):
|
|
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
|
|
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
|
|
|
|
|
|
@torch.no_grad()
|
|
def rebuild_weight(module_type, params, orig_weight, scale=1):
|
|
if orig_weight is None:
|
|
return orig_weight
|
|
merged = orig_weight
|
|
if module_type == 'locon':
|
|
up, down, mid, alpha = params
|
|
if alpha is not None:
|
|
scale *= alpha/up.size(1)
|
|
if mid is not None:
|
|
rebuild = cp_weight_from_conv(up, down, mid)
|
|
else:
|
|
rebuild = up.reshape(up.size(0),-1) @ down.reshape(down.size(0), -1)
|
|
merged = orig_weight + rebuild.reshape(orig_weight.shape) * scale
|
|
del up, down, mid, alpha, params, rebuild
|
|
elif module_type == 'hada':
|
|
w1a, w1b, w2a, w2b, t1, t2, alpha = params
|
|
if alpha is not None:
|
|
scale *= alpha / w1b.size(0)
|
|
if t1 is not None:
|
|
rebuild1 = cp_weight(w1a, w1b, t1)
|
|
else:
|
|
rebuild1 = w1a @ w1b
|
|
if t2 is not None:
|
|
rebuild2 = cp_weight(w2a, w2b, t2)
|
|
else:
|
|
rebuild2 = w2a @ w2b
|
|
rebuild = (rebuild1 * rebuild2).reshape(orig_weight.shape)
|
|
merged = orig_weight + rebuild * scale
|
|
del w1a, w1b, w2a, w2b, t1, t2, alpha, params, rebuild, rebuild1, rebuild2
|
|
elif module_type == 'ia3':
|
|
weight, on_input = params
|
|
if not on_input:
|
|
weight = weight.reshape(-1, 1)
|
|
merged = orig_weight + weight * orig_weight * scale
|
|
del weight, on_input, params
|
|
elif module_type == 'kron':
|
|
w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha = params
|
|
if alpha is not None and (w1b is not None or w2b is not None):
|
|
scale *= alpha / (w1b.size(0) if w1b else w2b.size(0))
|
|
if w1a is not None and w1b is not None:
|
|
if t1:
|
|
w1 = cp_weight(w1a, w1b, t1)
|
|
else:
|
|
w1 = w1a @ w1b
|
|
if w2a is not None and w2b is not None:
|
|
if t2:
|
|
w2 = cp_weight(w2a, w2b, t2)
|
|
else:
|
|
w2 = w2a @ w2b
|
|
rebuild = torch.kron(w1, w2).reshape(orig_weight.shape)
|
|
merged = orig_weight + rebuild* scale
|
|
del w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha, params, rebuild
|
|
elif module_type == 'full':
|
|
rebuild = params.reshape(orig_weight.shape)
|
|
merged = orig_weight + rebuild * scale
|
|
del params, rebuild
|
|
|
|
return merged
|
|
|
|
|
|
def merge(
|
|
base_model,
|
|
lyco_state_dict,
|
|
scale: float = 1.0,
|
|
device = 'cpu'
|
|
):
|
|
UNET_TARGET_REPLACE_MODULE = [
|
|
"Transformer2DModel",
|
|
"Attention",
|
|
"ResnetBlock2D",
|
|
"Downsample2D",
|
|
"Upsample2D"
|
|
]
|
|
UNET_TARGET_REPLACE_NAME = [
|
|
"conv_in",
|
|
"conv_out",
|
|
"time_embedding.linear_1",
|
|
"time_embedding.linear_2",
|
|
]
|
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
|
LORA_PREFIX_UNET = 'lora_unet'
|
|
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
|
|
merged = 0
|
|
def merge_state_dict(
|
|
prefix,
|
|
root_module: torch.nn.Module,
|
|
lyco_state_dict: Dict[str,torch.Tensor],
|
|
target_replace_modules,
|
|
target_replace_names = []
|
|
):
|
|
nonlocal merged
|
|
for name, module in tqdm(list(root_module.named_modules()), desc=f'Merging {prefix}'):
|
|
if module.__class__.__name__ in target_replace_modules:
|
|
for child_name, child_module in module.named_modules():
|
|
if child_module.__class__.__name__ not in {'Linear', 'Conv2d'}:
|
|
continue
|
|
lora_name = prefix + '.' + name + '.' + child_name
|
|
lora_name = lora_name.replace('.', '_')
|
|
|
|
result = rebuild_weight(*get_module(
|
|
lyco_state_dict, lora_name
|
|
), getattr(child_module, 'weight'), scale)
|
|
if result is not None:
|
|
merged += 1
|
|
child_module.requires_grad_(False)
|
|
child_module.weight.copy_(result)
|
|
elif name in target_replace_names:
|
|
lora_name = prefix + '.' + name
|
|
lora_name = lora_name.replace('.', '_')
|
|
|
|
result = rebuild_weight(*get_module(
|
|
lyco_state_dict, lora_name
|
|
), getattr(module, 'weight'), scale)
|
|
if result is not None:
|
|
merged += 1
|
|
module.requires_grad_(False)
|
|
module.weight.copy_(result)
|
|
|
|
if device == 'cpu':
|
|
for k, v in tqdm(list(lyco_state_dict.items()), desc='Converting Dtype'):
|
|
lyco_state_dict[k] = v.float()
|
|
|
|
merge_state_dict(
|
|
LORA_PREFIX_TEXT_ENCODER,
|
|
base_model[0],
|
|
lyco_state_dict,
|
|
TEXT_ENCODER_TARGET_REPLACE_MODULE,
|
|
UNET_TARGET_REPLACE_NAME
|
|
)
|
|
merge_state_dict(
|
|
LORA_PREFIX_UNET,
|
|
base_model[2],
|
|
lyco_state_dict,
|
|
UNET_TARGET_REPLACE_MODULE,
|
|
UNET_TARGET_REPLACE_NAME
|
|
)
|
|
print(f'{merged} Modules been merged') |