Spaces:
Sleeping
Sleeping
JohnSmith9982
commited on
Commit
•
2c3bb3b
1
Parent(s):
d340a9d
Upload 4 files
Browse files- app.py +6 -6
- presets.py +3 -2
- requirements.txt +4 -0
- utils.py +64 -27
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
# import openai
|
3 |
import os
|
4 |
import sys
|
5 |
import argparse
|
@@ -43,11 +43,11 @@ gr.Chatbot.postprocess = postprocess
|
|
43 |
|
44 |
with gr.Blocks(css=customCSS) as demo:
|
45 |
gr.HTML(title)
|
46 |
-
gr.HTML('''<center><a href="https://huggingface.co/spaces/JohnSmith9982/ChuanhuChatGPT?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="复制 Space"></a>强烈建议点击上面的按钮复制一份这个Space,在你自己的Space里运行,响应更迅速、也更安全👆</center>''')
|
47 |
with gr.Row():
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
51 |
chatbot = gr.Chatbot() # .style(color_map=("#1D51EE", "#585A5B"))
|
52 |
history = gr.State([])
|
53 |
token_count = gr.State([])
|
@@ -138,7 +138,7 @@ with gr.Blocks(css=customCSS) as demo:
|
|
138 |
|
139 |
templateApplyBtn.click(get_template_content, [promptTemplates, templateSelectDropdown, systemPromptTxt], [systemPromptTxt], show_progress=True)
|
140 |
|
141 |
-
print("川虎的温馨提示:访问 http://localhost:7860 查看界面")
|
142 |
# 默认开启本地服务器,默认可以直接从IP访问,默认不创建公开分享链接
|
143 |
demo.title = "川虎ChatGPT 🚀"
|
144 |
|
|
|
1 |
+
# -*- coding:utf-8 -*-
|
2 |
import gradio as gr
|
|
|
3 |
import os
|
4 |
import sys
|
5 |
import argparse
|
|
|
43 |
|
44 |
with gr.Blocks(css=customCSS) as demo:
|
45 |
gr.HTML(title)
|
|
|
46 |
with gr.Row():
|
47 |
+
with gr.Column(scale=4):
|
48 |
+
keyTxt = gr.Textbox(show_label=False, placeholder=f"在这里输入你的OpenAI API-key...",value=my_api_key, type="password", visible=not HIDE_MY_KEY).style(container=True)
|
49 |
+
with gr.Column(scale=1):
|
50 |
+
use_streaming_checkbox = gr.Checkbox(label="实时传输回答", value=True, visible=enable_streaming_option)
|
51 |
chatbot = gr.Chatbot() # .style(color_map=("#1D51EE", "#585A5B"))
|
52 |
history = gr.State([])
|
53 |
token_count = gr.State([])
|
|
|
138 |
|
139 |
templateApplyBtn.click(get_template_content, [promptTemplates, templateSelectDropdown, systemPromptTxt], [systemPromptTxt], show_progress=True)
|
140 |
|
141 |
+
print(colorama.Back.GREEN + "\n川虎的温馨提示:访问 http://localhost:7860 查看界面" + colorama.Style.RESET_ALL)
|
142 |
# 默认开启本地服务器,默认可以直接从IP访问,默认不创建公开分享链接
|
143 |
demo.title = "川虎ChatGPT 🚀"
|
144 |
|
presets.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
title = """<h1 align="center">川虎ChatGPT 🚀</h1>"""
|
2 |
description = """<div align=center>
|
3 |
|
@@ -33,9 +34,9 @@ pre code {
|
|
33 |
standard_error_msg = "☹️发生了错误:" # 错误信息的标准前缀
|
34 |
error_retrieve_prompt = "连接超时,无法获取对话。请检查网络连接,或者API-Key是否有效。" # 获取对话时发生错误
|
35 |
summarize_prompt = "请总结以上对话,不超过100字。" # 总结对话时的 prompt
|
36 |
-
max_token_streaming =
|
37 |
timeout_streaming = 5 # 流式对话时的超时时间
|
38 |
max_token_all = 3500 # 非流式对话时的最大 token 数
|
39 |
timeout_all = 200 # 非流式对话时的超时时间
|
40 |
-
enable_streaming_option =
|
41 |
HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True
|
|
|
1 |
+
# -*- coding:utf-8 -*-
|
2 |
title = """<h1 align="center">川虎ChatGPT 🚀</h1>"""
|
3 |
description = """<div align=center>
|
4 |
|
|
|
34 |
standard_error_msg = "☹️发生了错误:" # 错误信息的标准前缀
|
35 |
error_retrieve_prompt = "连接超时,无法获取对话。请检查网络连接,或者API-Key是否有效。" # 获取对话时发生错误
|
36 |
summarize_prompt = "请总结以上对话,不超过100字。" # 总结对话时的 prompt
|
37 |
+
max_token_streaming = 3500 # 流式对话时的最大 token 数
|
38 |
timeout_streaming = 5 # 流式对话时的超时时间
|
39 |
max_token_all = 3500 # 非流式对话时的最大 token 数
|
40 |
timeout_all = 200 # 非流式对话时的超时时间
|
41 |
+
enable_streaming_option = True # 是否启用选择选择是否实时显示回答的勾选框
|
42 |
HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True
|
requirements.txt
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
gradio
|
2 |
mdtex2html
|
3 |
pypinyin
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
mdtex2html
|
3 |
pypinyin
|
4 |
+
tiktoken
|
5 |
+
socksio
|
6 |
+
tqdm
|
7 |
+
colorama
|
utils.py
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
-
|
2 |
-
Along with the docs for each component, you can find the names of example demos that use
|
3 |
-
each component. These demos are located in the `demo` directory."""
|
4 |
-
|
5 |
from __future__ import annotations
|
6 |
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
|
7 |
import json
|
@@ -15,6 +12,9 @@ import csv
|
|
15 |
import mdtex2html
|
16 |
from pypinyin import lazy_pinyin
|
17 |
from presets import *
|
|
|
|
|
|
|
18 |
|
19 |
if TYPE_CHECKING:
|
20 |
from typing import TypedDict
|
@@ -48,6 +48,11 @@ def postprocess(
|
|
48 |
)
|
49 |
return y
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
def parse_text(text):
|
52 |
lines = text.split("\n")
|
53 |
lines = [line for line in lines if line != ""]
|
@@ -92,8 +97,7 @@ def construct_assistant(text):
|
|
92 |
return construct_text("assistant", text)
|
93 |
|
94 |
def construct_token_message(token, stream=False):
|
95 |
-
|
96 |
-
return f"{extra}Token 计数: {token}"
|
97 |
|
98 |
def get_response(openai_api_key, system_prompt, history, temperature, top_p, stream):
|
99 |
headers = {
|
@@ -123,11 +127,20 @@ def get_response(openai_api_key, system_prompt, history, temperature, top_p, str
|
|
123 |
def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, previous_token_count, top_p, temperature):
|
124 |
def get_return_value():
|
125 |
return chatbot, history, status_text, [*previous_token_count, token_counter]
|
|
|
|
|
126 |
token_counter = 0
|
127 |
partial_words = ""
|
128 |
counter = 0
|
129 |
-
status_text = "
|
130 |
history.append(construct_user(inputs))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
try:
|
132 |
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, True)
|
133 |
except requests.exceptions.ConnectTimeout:
|
@@ -138,7 +151,7 @@ def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, prev
|
|
138 |
chatbot.append((parse_text(inputs), ""))
|
139 |
yield get_return_value()
|
140 |
|
141 |
-
for chunk in response.iter_lines():
|
142 |
if counter == 0:
|
143 |
counter += 1
|
144 |
continue
|
@@ -151,8 +164,9 @@ def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, prev
|
|
151 |
# decode each line as response data is in bytes
|
152 |
if chunklength > 6 and "delta" in chunk['choices'][0]:
|
153 |
finish_reason = chunk['choices'][0]['finish_reason']
|
154 |
-
status_text = construct_token_message(sum(previous_token_count)+token_counter, stream=True)
|
155 |
if finish_reason == "stop":
|
|
|
156 |
yield get_return_value()
|
157 |
break
|
158 |
partial_words = partial_words + chunk['choices'][0]["delta"]["content"]
|
@@ -166,6 +180,7 @@ def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, prev
|
|
166 |
|
167 |
|
168 |
def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, previous_token_count, top_p, temperature):
|
|
|
169 |
history.append(construct_user(inputs))
|
170 |
try:
|
171 |
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, False)
|
@@ -179,22 +194,29 @@ def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, previou
|
|
179 |
total_token_count = response["usage"]["total_tokens"]
|
180 |
previous_token_count.append(total_token_count - sum(previous_token_count))
|
181 |
status_text = construct_token_message(total_token_count)
|
|
|
182 |
return chatbot, history, status_text, previous_token_count
|
183 |
|
184 |
|
185 |
def predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=False, should_check_token_count = True): # repetition_penalty, top_k
|
|
|
186 |
if stream:
|
|
|
187 |
iter = stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature)
|
188 |
for chatbot, history, status_text, token_count in iter:
|
189 |
yield chatbot, history, status_text, token_count
|
190 |
else:
|
|
|
191 |
chatbot, history, status_text, token_count = predict_all(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature)
|
192 |
yield chatbot, history, status_text, token_count
|
|
|
|
|
193 |
if stream:
|
194 |
max_token = max_token_streaming
|
195 |
else:
|
196 |
max_token = max_token_all
|
197 |
if sum(token_count) > max_token and should_check_token_count:
|
|
|
198 |
iter = reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, hidden=True)
|
199 |
for chatbot, history, status_text, token_count in iter:
|
200 |
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
|
@@ -202,6 +224,7 @@ def predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count
|
|
202 |
|
203 |
|
204 |
def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False):
|
|
|
205 |
if len(history) == 0:
|
206 |
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
|
207 |
return
|
@@ -209,11 +232,13 @@ def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, t
|
|
209 |
inputs = history.pop()["content"]
|
210 |
token_count.pop()
|
211 |
iter = predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream)
|
|
|
212 |
for x in iter:
|
213 |
yield x
|
214 |
|
215 |
|
216 |
def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, hidden=False):
|
|
|
217 |
iter = predict(openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, stream=stream, should_check_token_count=False)
|
218 |
for chatbot, history, status_text, previous_token_count in iter:
|
219 |
history = history[-2:]
|
@@ -221,23 +246,29 @@ def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_cou
|
|
221 |
if hidden:
|
222 |
chatbot.pop()
|
223 |
yield chatbot, history, construct_token_message(sum(token_count), stream=stream), token_count
|
|
|
224 |
|
225 |
|
226 |
def delete_last_conversation(chatbot, history, previous_token_count, streaming):
|
227 |
if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]:
|
|
|
228 |
chatbot.pop()
|
229 |
return chatbot, history
|
230 |
if len(history) > 0:
|
|
|
231 |
history.pop()
|
232 |
history.pop()
|
233 |
if len(chatbot) > 0:
|
|
|
234 |
chatbot.pop()
|
235 |
if len(previous_token_count) > 0:
|
|
|
236 |
previous_token_count.pop()
|
237 |
return chatbot, history, previous_token_count, construct_token_message(sum(previous_token_count), streaming)
|
238 |
|
239 |
|
240 |
def save_chat_history(filename, system, history, chatbot):
|
|
|
241 |
if filename == "":
|
242 |
return
|
243 |
if not filename.endswith(".json"):
|
@@ -247,30 +278,39 @@ def save_chat_history(filename, system, history, chatbot):
|
|
247 |
print(json_s)
|
248 |
with open(os.path.join(HISTORY_DIR, filename), "w") as f:
|
249 |
json.dump(json_s, f)
|
|
|
250 |
|
251 |
|
252 |
def load_chat_history(filename, system, history, chatbot):
|
|
|
253 |
try:
|
254 |
with open(os.path.join(HISTORY_DIR, filename), "r") as f:
|
255 |
json_s = json.load(f)
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
return filename, json_s["system"], json_s["history"], json_s["chatbot"]
|
265 |
except FileNotFoundError:
|
266 |
-
print("
|
267 |
return filename, system, history, chatbot
|
268 |
|
269 |
def sorted_by_pinyin(list):
|
270 |
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0])
|
271 |
|
272 |
def get_file_names(dir, plain=False, filetypes=[".json"]):
|
273 |
-
|
274 |
files = []
|
275 |
try:
|
276 |
for type in filetypes:
|
@@ -286,9 +326,11 @@ def get_file_names(dir, plain=False, filetypes=[".json"]):
|
|
286 |
return gr.Dropdown.update(choices=files)
|
287 |
|
288 |
def get_history_names(plain=False):
|
|
|
289 |
return get_file_names(HISTORY_DIR, plain)
|
290 |
|
291 |
def load_template(filename, mode=0):
|
|
|
292 |
lines = []
|
293 |
print("Loading template...")
|
294 |
if filename.endswith(".json"):
|
@@ -309,24 +351,19 @@ def load_template(filename, mode=0):
|
|
309 |
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0])
|
310 |
|
311 |
def get_template_names(plain=False):
|
|
|
312 |
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"])
|
313 |
|
314 |
def get_template_content(templates, selection, original_system_prompt):
|
|
|
315 |
try:
|
316 |
return templates[selection]
|
317 |
except:
|
318 |
return original_system_prompt
|
319 |
|
320 |
def reset_state():
|
|
|
321 |
return [], [], [], construct_token_message(0)
|
322 |
|
323 |
-
def compose_system(system_prompt):
|
324 |
-
return {"role": "system", "content": system_prompt}
|
325 |
-
|
326 |
-
|
327 |
-
def compose_user(user_input):
|
328 |
-
return {"role": "user", "content": user_input}
|
329 |
-
|
330 |
-
|
331 |
def reset_textbox():
|
332 |
return gr.update(value='')
|
|
|
1 |
+
# -*- coding:utf-8 -*-
|
|
|
|
|
|
|
2 |
from __future__ import annotations
|
3 |
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
|
4 |
import json
|
|
|
12 |
import mdtex2html
|
13 |
from pypinyin import lazy_pinyin
|
14 |
from presets import *
|
15 |
+
import tiktoken
|
16 |
+
from tqdm import tqdm
|
17 |
+
import colorama
|
18 |
|
19 |
if TYPE_CHECKING:
|
20 |
from typing import TypedDict
|
|
|
48 |
)
|
49 |
return y
|
50 |
|
51 |
+
def count_token(input_str):
|
52 |
+
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
53 |
+
length = len(encoding.encode(input_str))
|
54 |
+
return length
|
55 |
+
|
56 |
def parse_text(text):
|
57 |
lines = text.split("\n")
|
58 |
lines = [line for line in lines if line != ""]
|
|
|
97 |
return construct_text("assistant", text)
|
98 |
|
99 |
def construct_token_message(token, stream=False):
|
100 |
+
return f"Token 计数: {token}"
|
|
|
101 |
|
102 |
def get_response(openai_api_key, system_prompt, history, temperature, top_p, stream):
|
103 |
headers = {
|
|
|
127 |
def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, previous_token_count, top_p, temperature):
|
128 |
def get_return_value():
|
129 |
return chatbot, history, status_text, [*previous_token_count, token_counter]
|
130 |
+
|
131 |
+
print("实时回答模式")
|
132 |
token_counter = 0
|
133 |
partial_words = ""
|
134 |
counter = 0
|
135 |
+
status_text = "开始实时传输回答……"
|
136 |
history.append(construct_user(inputs))
|
137 |
+
user_token_count = 0
|
138 |
+
if len(previous_token_count) == 0:
|
139 |
+
system_prompt_token_count = count_token(system_prompt)
|
140 |
+
user_token_count = count_token(inputs) + system_prompt_token_count
|
141 |
+
else:
|
142 |
+
user_token_count = count_token(inputs)
|
143 |
+
print(f"输入token计数: {user_token_count}")
|
144 |
try:
|
145 |
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, True)
|
146 |
except requests.exceptions.ConnectTimeout:
|
|
|
151 |
chatbot.append((parse_text(inputs), ""))
|
152 |
yield get_return_value()
|
153 |
|
154 |
+
for chunk in tqdm(response.iter_lines()):
|
155 |
if counter == 0:
|
156 |
counter += 1
|
157 |
continue
|
|
|
164 |
# decode each line as response data is in bytes
|
165 |
if chunklength > 6 and "delta" in chunk['choices'][0]:
|
166 |
finish_reason = chunk['choices'][0]['finish_reason']
|
167 |
+
status_text = construct_token_message(sum(previous_token_count)+token_counter+user_token_count, stream=True)
|
168 |
if finish_reason == "stop":
|
169 |
+
print("生成完毕")
|
170 |
yield get_return_value()
|
171 |
break
|
172 |
partial_words = partial_words + chunk['choices'][0]["delta"]["content"]
|
|
|
180 |
|
181 |
|
182 |
def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, previous_token_count, top_p, temperature):
|
183 |
+
print("一次性回答模式")
|
184 |
history.append(construct_user(inputs))
|
185 |
try:
|
186 |
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, False)
|
|
|
194 |
total_token_count = response["usage"]["total_tokens"]
|
195 |
previous_token_count.append(total_token_count - sum(previous_token_count))
|
196 |
status_text = construct_token_message(total_token_count)
|
197 |
+
print("生成一次性回答完毕")
|
198 |
return chatbot, history, status_text, previous_token_count
|
199 |
|
200 |
|
201 |
def predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=False, should_check_token_count = True): # repetition_penalty, top_k
|
202 |
+
print("输入为:" +colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
|
203 |
if stream:
|
204 |
+
print("使用流式传输")
|
205 |
iter = stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature)
|
206 |
for chatbot, history, status_text, token_count in iter:
|
207 |
yield chatbot, history, status_text, token_count
|
208 |
else:
|
209 |
+
print("不使用流式传输")
|
210 |
chatbot, history, status_text, token_count = predict_all(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature)
|
211 |
yield chatbot, history, status_text, token_count
|
212 |
+
print(f"传输完毕。当前token计数为{token_count}")
|
213 |
+
print("回答为:" +colorama.Fore.BLUE + f"{history[-1]['content']}" + colorama.Style.RESET_ALL)
|
214 |
if stream:
|
215 |
max_token = max_token_streaming
|
216 |
else:
|
217 |
max_token = max_token_all
|
218 |
if sum(token_count) > max_token and should_check_token_count:
|
219 |
+
print(f"精简token中{token_count}/{max_token}")
|
220 |
iter = reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, hidden=True)
|
221 |
for chatbot, history, status_text, token_count in iter:
|
222 |
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
|
|
|
224 |
|
225 |
|
226 |
def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False):
|
227 |
+
print("重试中……")
|
228 |
if len(history) == 0:
|
229 |
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
|
230 |
return
|
|
|
232 |
inputs = history.pop()["content"]
|
233 |
token_count.pop()
|
234 |
iter = predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream)
|
235 |
+
print("重试完毕")
|
236 |
for x in iter:
|
237 |
yield x
|
238 |
|
239 |
|
240 |
def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, hidden=False):
|
241 |
+
print("开始减少token数量……")
|
242 |
iter = predict(openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, stream=stream, should_check_token_count=False)
|
243 |
for chatbot, history, status_text, previous_token_count in iter:
|
244 |
history = history[-2:]
|
|
|
246 |
if hidden:
|
247 |
chatbot.pop()
|
248 |
yield chatbot, history, construct_token_message(sum(token_count), stream=stream), token_count
|
249 |
+
print("减少token数量完毕")
|
250 |
|
251 |
|
252 |
def delete_last_conversation(chatbot, history, previous_token_count, streaming):
|
253 |
if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]:
|
254 |
+
print("由于包含报错信息,只删除chatbot记录")
|
255 |
chatbot.pop()
|
256 |
return chatbot, history
|
257 |
if len(history) > 0:
|
258 |
+
print("删除了一组对话历史")
|
259 |
history.pop()
|
260 |
history.pop()
|
261 |
if len(chatbot) > 0:
|
262 |
+
print("删除了一组chatbot对话")
|
263 |
chatbot.pop()
|
264 |
if len(previous_token_count) > 0:
|
265 |
+
print("删除了一组对话的token计数记录")
|
266 |
previous_token_count.pop()
|
267 |
return chatbot, history, previous_token_count, construct_token_message(sum(previous_token_count), streaming)
|
268 |
|
269 |
|
270 |
def save_chat_history(filename, system, history, chatbot):
|
271 |
+
print("保存对话历史中……")
|
272 |
if filename == "":
|
273 |
return
|
274 |
if not filename.endswith(".json"):
|
|
|
278 |
print(json_s)
|
279 |
with open(os.path.join(HISTORY_DIR, filename), "w") as f:
|
280 |
json.dump(json_s, f)
|
281 |
+
print("保存对话历史完毕")
|
282 |
|
283 |
|
284 |
def load_chat_history(filename, system, history, chatbot):
|
285 |
+
print("加载对话历史中……")
|
286 |
try:
|
287 |
with open(os.path.join(HISTORY_DIR, filename), "r") as f:
|
288 |
json_s = json.load(f)
|
289 |
+
try:
|
290 |
+
if type(json_s["history"][0]) == str:
|
291 |
+
print("历史记录格式为旧版,正在转换……")
|
292 |
+
new_history = []
|
293 |
+
for index, item in enumerate(json_s["history"]):
|
294 |
+
if index % 2 == 0:
|
295 |
+
new_history.append(construct_user(item))
|
296 |
+
else:
|
297 |
+
new_history.append(construct_assistant(item))
|
298 |
+
json_s["history"] = new_history
|
299 |
+
print(new_history)
|
300 |
+
except:
|
301 |
+
# 没有对话历史
|
302 |
+
pass
|
303 |
+
print("加载对话历史完毕")
|
304 |
return filename, json_s["system"], json_s["history"], json_s["chatbot"]
|
305 |
except FileNotFoundError:
|
306 |
+
print("没有找到对话历史文件,不执行任何操作")
|
307 |
return filename, system, history, chatbot
|
308 |
|
309 |
def sorted_by_pinyin(list):
|
310 |
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0])
|
311 |
|
312 |
def get_file_names(dir, plain=False, filetypes=[".json"]):
|
313 |
+
print(f"获取文件名列表,目录为{dir},文件类型为{filetypes},是否为纯文本列表{plain}")
|
314 |
files = []
|
315 |
try:
|
316 |
for type in filetypes:
|
|
|
326 |
return gr.Dropdown.update(choices=files)
|
327 |
|
328 |
def get_history_names(plain=False):
|
329 |
+
print("获取历史记录文件名列表")
|
330 |
return get_file_names(HISTORY_DIR, plain)
|
331 |
|
332 |
def load_template(filename, mode=0):
|
333 |
+
print(f"加载模板文件{filename},模式为{mode}(0为返回字典和下拉菜单,1为返回下拉菜单,2为返回字典)")
|
334 |
lines = []
|
335 |
print("Loading template...")
|
336 |
if filename.endswith(".json"):
|
|
|
351 |
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0])
|
352 |
|
353 |
def get_template_names(plain=False):
|
354 |
+
print("获取模板文件名列表")
|
355 |
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"])
|
356 |
|
357 |
def get_template_content(templates, selection, original_system_prompt):
|
358 |
+
print(f"应用模板中,选择为{selection},原始系统提示为{original_system_prompt}")
|
359 |
try:
|
360 |
return templates[selection]
|
361 |
except:
|
362 |
return original_system_prompt
|
363 |
|
364 |
def reset_state():
|
365 |
+
print("重置状态")
|
366 |
return [], [], [], construct_token_message(0)
|
367 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
def reset_textbox():
|
369 |
return gr.update(value='')
|