import streamlit as st from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface import HuggingFaceInferenceAPI from dotenv import load_dotenv from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import os from transformers import AutoTokenizer, AutoModelForCausalLM import base64 # Load environment variables load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( #model_name = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B"), #tokenizer_name = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B"), tokenizer_name = AutoTokenizer.from_pretrained("gradientai/Llama-3-8B-Instruct-Gradient-1048k"), model_name = AutoModelForCausalLM.from_pretrained("gradientai/Llama-3-8B-Instruct-Gradient-1048k"), context_window=3900, token=os.getenv("HF_TOKEN"), max_new_tokens=1000, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) def displayPDF(file): with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') pdf_display = f'' st.markdown(pdf_display, unsafe_allow_html=True) def data_ingestion(): documents = SimpleDirectoryReader(DATA_DIR).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are a Q&A assistant named CHAt_WITH_PDF, created by Yuvarani. You have a specific response programmed for when users specifically ask about your creator, Yuvarani. The response is: "I was created by Yuvarani, an enthusiast in Artificial Intelligence. She is dedicated to solving complex problems and delivering innovative solutions. With a strong focus on machine learning, deep learning, Python, generative AI, NLP, and computer vision, She is passionate about pushing the boundaries of AI to explore new possibilities." For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) if hasattr(answer, 'response'): return answer.response elif isinstance(answer, dict) and 'response' in answer: return answer['response'] else: return "Sorry, I couldn't find an answer." # Streamlit app initialization st.title("Chat with your PDF πŸ¦œπŸ“„") st.markdown("chat hereπŸ‘‡") if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}] with st.sidebar: st.title("Menu:") uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button") if st.button("Submit & Process"): with st.spinner("Processing..."): filepath = "data/saved_pdf.pdf" with open(filepath, "wb") as f: f.write(uploaded_file.getbuffer()) # displayPDF(filepath) # Display the uploaded PDF data_ingestion() # Process PDF every time new file is uploaded st.success("Done") user_prompt = st.chat_input("Ask me anything about the content of the PDF:") if user_prompt: st.session_state.messages.append({'role': 'user', "content": user_prompt}) response = handle_query(user_prompt) st.session_state.messages.append({'role': 'assistant', "content": response}) for message in st.session_state.messages: with st.chat_message(message['role']): st.write(message['content'])