File size: 16,012 Bytes
1ba239b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
## data loader
## Ackownledgement:
## We would like to thank Dr. Ibrahim Almakky (https://scholar.google.co.uk/citations?user=T9MTcK0AAAAJ&hl=en)
## for his helps in implementing cache machanism of our DIS dataloader.
from __future__ import print_function, division
import numpy as np
import random
from copy import deepcopy
import json
from tqdm import tqdm
from skimage import io
import os
from glob import glob
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torchvision.transforms.functional import normalize
import torch.nn.functional as F
#### --------------------- DIS dataloader cache ---------------------####
def get_im_gt_name_dict(datasets, flag='valid'):
print("------------------------------", flag, "--------------------------------")
name_im_gt_list = []
for i in range(len(datasets)):
print("--->>>", flag, " dataset ",i,"/",len(datasets)," ",datasets[i]["name"],"<<<---")
tmp_im_list, tmp_gt_list = [], []
tmp_im_list = glob(datasets[i]["im_dir"]+os.sep+'*'+datasets[i]["im_ext"])
# img_name_dict[im_dirs[i][0]] = tmp_im_list
print('-im-',datasets[i]["name"],datasets[i]["im_dir"], ': ',len(tmp_im_list))
if(datasets[i]["gt_dir"]==""):
print('-gt-', datasets[i]["name"], datasets[i]["gt_dir"], ': ', 'No Ground Truth Found')
tmp_gt_list = []
else:
tmp_gt_list = [datasets[i]["gt_dir"]+os.sep+x.split(os.sep)[-1].split(datasets[i]["im_ext"])[0]+datasets[i]["gt_ext"] for x in tmp_im_list]
# lbl_name_dict[im_dirs[i][0]] = tmp_gt_list
print('-gt-', datasets[i]["name"],datasets[i]["gt_dir"], ': ',len(tmp_gt_list))
if flag=="train": ## combine multiple training sets into one dataset
if len(name_im_gt_list)==0:
name_im_gt_list.append({"dataset_name":datasets[i]["name"],
"im_path":tmp_im_list,
"gt_path":tmp_gt_list,
"im_ext":datasets[i]["im_ext"],
"gt_ext":datasets[i]["gt_ext"],
"cache_dir":datasets[i]["cache_dir"]})
else:
name_im_gt_list[0]["dataset_name"] = name_im_gt_list[0]["dataset_name"] + "_" + datasets[i]["name"]
name_im_gt_list[0]["im_path"] = name_im_gt_list[0]["im_path"] + tmp_im_list
name_im_gt_list[0]["gt_path"] = name_im_gt_list[0]["gt_path"] + tmp_gt_list
if datasets[i]["im_ext"]!=".jpg" or datasets[i]["gt_ext"]!=".png":
print("Error: Please make sure all you images and ground truth masks are in jpg and png format respectively !!!")
exit()
name_im_gt_list[0]["im_ext"] = ".jpg"
name_im_gt_list[0]["gt_ext"] = ".png"
name_im_gt_list[0]["cache_dir"] = os.sep.join(datasets[i]["cache_dir"].split(os.sep)[0:-1])+os.sep+name_im_gt_list[0]["dataset_name"]
else: ## keep different validation or inference datasets as separate ones
name_im_gt_list.append({"dataset_name":datasets[i]["name"],
"im_path":tmp_im_list,
"gt_path":tmp_gt_list,
"im_ext":datasets[i]["im_ext"],
"gt_ext":datasets[i]["gt_ext"],
"cache_dir":datasets[i]["cache_dir"]})
return name_im_gt_list
def create_dataloaders(name_im_gt_list, cache_size=[], cache_boost=True, my_transforms=[], batch_size=1, shuffle=False):
## model="train": return one dataloader for training
## model="valid": return a list of dataloaders for validation or testing
gos_dataloaders = []
gos_datasets = []
if(len(name_im_gt_list)==0):
return gos_dataloaders, gos_datasets
num_workers_ = 1
if(batch_size>1):
num_workers_ = 2
if(batch_size>4):
num_workers_ = 4
if(batch_size>8):
num_workers_ = 8
for i in range(0,len(name_im_gt_list)):
gos_dataset = GOSDatasetCache([name_im_gt_list[i]],
cache_size = cache_size,
cache_path = name_im_gt_list[i]["cache_dir"],
cache_boost = cache_boost,
transform = transforms.Compose(my_transforms))
gos_dataloaders.append(DataLoader(gos_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers_))
gos_datasets.append(gos_dataset)
return gos_dataloaders, gos_datasets
def im_reader(im_path):
return io.imread(im_path)
def im_preprocess(im,size):
if len(im.shape) < 3:
im = im[:, :, np.newaxis]
if im.shape[2] == 1:
im = np.repeat(im, 3, axis=2)
im_tensor = torch.tensor(im.copy(), dtype=torch.float32)
im_tensor = torch.transpose(torch.transpose(im_tensor,1,2),0,1)
if(len(size)<2):
return im_tensor, im.shape[0:2]
else:
im_tensor = torch.unsqueeze(im_tensor,0)
im_tensor = F.upsample(im_tensor, size, mode="bilinear")
im_tensor = torch.squeeze(im_tensor,0)
return im_tensor.type(torch.uint8), im.shape[0:2]
def gt_preprocess(gt,size):
if len(gt.shape) > 2:
gt = gt[:, :, 0]
gt_tensor = torch.unsqueeze(torch.tensor(gt, dtype=torch.uint8),0)
if(len(size)<2):
return gt_tensor.type(torch.uint8), gt.shape[0:2]
else:
gt_tensor = torch.unsqueeze(torch.tensor(gt_tensor, dtype=torch.float32),0)
gt_tensor = F.upsample(gt_tensor, size, mode="bilinear")
gt_tensor = torch.squeeze(gt_tensor,0)
return gt_tensor.type(torch.uint8), gt.shape[0:2]
# return gt_tensor, gt.shape[0:2]
class GOSRandomHFlip(object):
def __init__(self,prob=0.5):
self.prob = prob
def __call__(self,sample):
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
# random horizontal flip
if random.random() >= self.prob:
image = torch.flip(image,dims=[2])
label = torch.flip(label,dims=[2])
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
class GOSResize(object):
def __init__(self,size=[320,320]):
self.size = size
def __call__(self,sample):
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
# import time
# start = time.time()
image = torch.squeeze(F.upsample(torch.unsqueeze(image,0),self.size,mode='bilinear'),dim=0)
label = torch.squeeze(F.upsample(torch.unsqueeze(label,0),self.size,mode='bilinear'),dim=0)
# print("time for resize: ", time.time()-start)
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
class GOSRandomCrop(object):
def __init__(self,size=[288,288]):
self.size = size
def __call__(self,sample):
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
h, w = image.shape[1:]
new_h, new_w = self.size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
image = image[:,top:top+new_h,left:left+new_w]
label = label[:,top:top+new_h,left:left+new_w]
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
class GOSNormalize(object):
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,sample):
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
image = normalize(image,self.mean,self.std)
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
class GOSDatasetCache(Dataset):
def __init__(self, name_im_gt_list, cache_size=[], cache_path='./cache', cache_file_name='dataset.json', cache_boost=False, transform=None):
self.cache_size = cache_size
self.cache_path = cache_path
self.cache_file_name = cache_file_name
self.cache_boost_name = ""
self.cache_boost = cache_boost
# self.ims_npy = None
# self.gts_npy = None
## cache all the images and ground truth into a single pytorch tensor
self.ims_pt = None
self.gts_pt = None
## we will cache the npy as well regardless of the cache_boost
# if(self.cache_boost):
self.cache_boost_name = cache_file_name.split('.json')[0]
self.transform = transform
self.dataset = {}
## combine different datasets into one
dataset_names = []
dt_name_list = [] # dataset name per image
im_name_list = [] # image name
im_path_list = [] # im path
gt_path_list = [] # gt path
im_ext_list = [] # im ext
gt_ext_list = [] # gt ext
for i in range(0,len(name_im_gt_list)):
dataset_names.append(name_im_gt_list[i]["dataset_name"])
# dataset name repeated based on the number of images in this dataset
dt_name_list.extend([name_im_gt_list[i]["dataset_name"] for x in name_im_gt_list[i]["im_path"]])
im_name_list.extend([x.split(os.sep)[-1].split(name_im_gt_list[i]["im_ext"])[0] for x in name_im_gt_list[i]["im_path"]])
im_path_list.extend(name_im_gt_list[i]["im_path"])
gt_path_list.extend(name_im_gt_list[i]["gt_path"])
im_ext_list.extend([name_im_gt_list[i]["im_ext"] for x in name_im_gt_list[i]["im_path"]])
gt_ext_list.extend([name_im_gt_list[i]["gt_ext"] for x in name_im_gt_list[i]["gt_path"]])
self.dataset["data_name"] = dt_name_list
self.dataset["im_name"] = im_name_list
self.dataset["im_path"] = im_path_list
self.dataset["ori_im_path"] = deepcopy(im_path_list)
self.dataset["gt_path"] = gt_path_list
self.dataset["ori_gt_path"] = deepcopy(gt_path_list)
self.dataset["im_shp"] = []
self.dataset["gt_shp"] = []
self.dataset["im_ext"] = im_ext_list
self.dataset["gt_ext"] = gt_ext_list
self.dataset["ims_pt_dir"] = ""
self.dataset["gts_pt_dir"] = ""
self.dataset = self.manage_cache(dataset_names)
def manage_cache(self,dataset_names):
if not os.path.exists(self.cache_path): # create the folder for cache
os.makedirs(self.cache_path)
cache_folder = os.path.join(self.cache_path, "_".join(dataset_names)+"_"+"x".join([str(x) for x in self.cache_size]))
if not os.path.exists(cache_folder): # check if the cache files are there, if not then cache
return self.cache(cache_folder)
return self.load_cache(cache_folder)
def cache(self,cache_folder):
os.mkdir(cache_folder)
cached_dataset = deepcopy(self.dataset)
# ims_list = []
# gts_list = []
ims_pt_list = []
gts_pt_list = []
for i, im_path in tqdm(enumerate(self.dataset["im_path"]), total=len(self.dataset["im_path"])):
im_id = cached_dataset["im_name"][i]
print("im_path: ", im_path)
im = im_reader(im_path)
im, im_shp = im_preprocess(im,self.cache_size)
im_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_im.pt")
torch.save(im,im_cache_file)
cached_dataset["im_path"][i] = im_cache_file
if(self.cache_boost):
ims_pt_list.append(torch.unsqueeze(im,0))
# ims_list.append(im.cpu().data.numpy().astype(np.uint8))
gt = np.zeros(im.shape[0:2])
if len(self.dataset["gt_path"])!=0:
gt = im_reader(self.dataset["gt_path"][i])
gt, gt_shp = gt_preprocess(gt,self.cache_size)
gt_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_gt.pt")
torch.save(gt,gt_cache_file)
if len(self.dataset["gt_path"])>0:
cached_dataset["gt_path"][i] = gt_cache_file
else:
cached_dataset["gt_path"].append(gt_cache_file)
if(self.cache_boost):
gts_pt_list.append(torch.unsqueeze(gt,0))
# gts_list.append(gt.cpu().data.numpy().astype(np.uint8))
# im_shp_cache_file = os.path.join(cache_folder,im_id + "_im_shp.pt")
# torch.save(gt_shp, shp_cache_file)
cached_dataset["im_shp"].append(im_shp)
# self.dataset["im_shp"].append(im_shp)
# shp_cache_file = os.path.join(cache_folder,im_id + "_gt_shp.pt")
# torch.save(gt_shp, shp_cache_file)
cached_dataset["gt_shp"].append(gt_shp)
# self.dataset["gt_shp"].append(gt_shp)
if(self.cache_boost):
cached_dataset["ims_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_ims.pt')
cached_dataset["gts_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_gts.pt')
self.ims_pt = torch.cat(ims_pt_list,dim=0)
self.gts_pt = torch.cat(gts_pt_list,dim=0)
torch.save(torch.cat(ims_pt_list,dim=0),cached_dataset["ims_pt_dir"])
torch.save(torch.cat(gts_pt_list,dim=0),cached_dataset["gts_pt_dir"])
try:
json_file = open(os.path.join(cache_folder, self.cache_file_name),"w")
json.dump(cached_dataset, json_file)
json_file.close()
except Exception:
raise FileNotFoundError("Cannot create JSON")
return cached_dataset
def load_cache(self, cache_folder):
json_file = open(os.path.join(cache_folder,self.cache_file_name),"r")
dataset = json.load(json_file)
json_file.close()
## if cache_boost is true, we will load the image npy and ground truth npy into the RAM
## otherwise the pytorch tensor will be loaded
if(self.cache_boost):
# self.ims_npy = np.load(dataset["ims_npy_dir"])
# self.gts_npy = np.load(dataset["gts_npy_dir"])
self.ims_pt = torch.load(dataset["ims_pt_dir"], map_location='cpu')
self.gts_pt = torch.load(dataset["gts_pt_dir"], map_location='cpu')
return dataset
def __len__(self):
return len(self.dataset["im_path"])
def __getitem__(self, idx):
im = None
gt = None
if(self.cache_boost and self.ims_pt is not None):
# start = time.time()
im = self.ims_pt[idx]#.type(torch.float32)
gt = self.gts_pt[idx]#.type(torch.float32)
# print(idx, 'time for pt loading: ', time.time()-start)
else:
# import time
# start = time.time()
# print("tensor***")
im_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["im_path"][idx].split(os.sep)[-2:]))
im = torch.load(im_pt_path)#(self.dataset["im_path"][idx])
gt_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["gt_path"][idx].split(os.sep)[-2:]))
gt = torch.load(gt_pt_path)#(self.dataset["gt_path"][idx])
# print(idx,'time for tensor loading: ', time.time()-start)
im_shp = self.dataset["im_shp"][idx]
# print("time for loading im and gt: ", time.time()-start)
# start_time = time.time()
im = torch.divide(im,255.0)
gt = torch.divide(gt,255.0)
# print(idx, 'time for normalize torch divide: ', time.time()-start_time)
sample = {
"imidx": torch.from_numpy(np.array(idx)),
"image": im,
"label": gt,
"shape": torch.from_numpy(np.array(im_shp)),
}
if self.transform:
sample = self.transform(sample)
return sample
|