import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import pipeline
import torch
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
te_tokenizer = AutoTokenizer.from_pretrained('MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli')
te_model = AutoModelForSequenceClassification.from_pretrained('MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli').to(device)
qa_pipeline = pipeline("question-answering", model='distilbert/distilbert-base-cased-distilled-squad')
qa_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
qa_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto")
def predict(context, intent, multi_class):
print(context, intent)
input_text = "What is the opposite of " + intent + "?"
input_ids = qa_tokenizer(input_text, return_tensors="pt").input_ids.to(device)
opposite_output = qa_tokenizer.decode(qa_model.generate(input_ids, max_length=2)[0], skip_special_tokens=True)
input_text = "What object/thing is being described in the entire sentence?"
object_output = qa_pipeline(question=input_text, context=context, max_answer_len=2)['answer']
batch = ['The ' + object_output + ' is ' + intent, 'The ' + object_output + ' is ' + opposite_output, 'The ' + object_output + ' is neither ' + intent + ' nor ' + opposite_output]
outputs = []
normal = 0
print(batch)
for i, hypothesis in enumerate(batch):
input_ids = te_tokenizer.encode(context, hypothesis, return_tensors='pt').to(device)
# -> [contradiction, neutral, entailment]
logits = te_model(input_ids)[0][0]
if (i == 0):
normal = logits
if (i >= 2):
# -> [contradiction, entailment]
probs = logits[[0,2]].softmax(dim=0)
else:
probs = torch.exp(logits)
outputs.append(probs)
# calculate the stochastic vector for it being neither the positive or negative class
perfect_prob = outputs[2]
# -> [entailment, contradiction] for perfect
# -> [entailment, neutral, contradiction] for positive
outputs[1] = outputs[1].flip(dims=[0])
print(outputs)
print(perfect_prob)
# combine the negative and positive class by summing by the opposite of the negative class
aggregated = (outputs[0]+outputs[1])/2
print(aggregated)
# multiplying vectors
aggregated[1] = aggregated[1] + perfect_prob[0]
aggregated[0] = aggregated[0] * perfect_prob[1]
aggregated[2] = aggregated[2] * perfect_prob[1]
# multiple true classes
if (multi_class):
aggregated = torch.sigmoid(aggregated)
normal = torch.sigmoid(normal)
# only one true class
else:
aggregated = aggregated.softmax(dim=0)
normal = normal.softmax(dim=0)
return {"agree": aggregated[0], "neutral": aggregated[1], "disagree": aggregated[2]}, {"agree": normal[0], "neutral": normal[1], "disagree": normal[2]}
examples = [["These are so warm and comfortable. Iām 5ā7ā, 140 lbs, size 6-8 and Medium is a great fit. They wash and dry nicely too. The jogger style is the only style I can wear in this brand - the others are way too long so I had to return.", "long"], ["I feel strongly about politics in the US", "long"], ["The pants are long", "long"], ["The pants are slightly long", "long"]]
gradio_app = gr.Interface(
predict,
examples=examples,
inputs=[gr.Text(label="Statement"), gr.Text(label="Class"), gr.Checkbox(label="Allow multiple true classes")],
outputs=[gr.Label(num_top_classes=3, label="With Postprocessing"), gr.Label(num_top_classes=3, label="Without Postprocessing")],
title="Intent Analysis",
description="This model predicts whether or not the **_class_** describes the **_object described in the sentence_**.
The two outputs shows what TE would predict with and without the postprocessing. An example edge case for normal TE is shown below.
**_It is recommended that you clone the repository to speed up processing time_**.
Additionally, note the difference between the strength of the probability when going between the last two examples, the former representing a strong opinion and the latter a weaker opinion",
cache_examples=True
)
gradio_app.launch()