from datasets import load_dataset import pandas as pd import torch from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from transformers import BertTokenizer, BertForQuestionAnswering, BertConfig,AutoModelForCausalLM from pymongo import MongoClient import torchtext torchtext.disable_torchtext_deprecation_warning() from torchtext.data import get_tokenizer from yeni_tokenize import TokenizerProcessor class Database: # MongoDB connection settings def get_mongodb(database_name='yeniDatabase', collection_name='test', host='localhost', port=27017): """ MongoDB connection and collection selection """ client = MongoClient(f'mongodb://{host}:{port}/') db = client[database_name] collection = db[collection_name] return collection @staticmethod def get_mongodb(): # MongoDB bağlantı bilgilerini döndürecek şekilde tanımlanmalıdır. return 'mongodb://localhost:27017/', 'yeniDatabase', 'train' @staticmethod def get_input_texts(): # MongoDB bağlantı bilgilerini alma mongo_url, db_name, collection_name = Database.get_mongodb() # MongoDB'ye bağlanma client = MongoClient(mongo_url) db = client[db_name] collection = db[collection_name] # Sorguyu tanımlama query = {"Prompt": {"$exists": True}} # Sorguyu çalıştırma ve dökümanları çekme cursor = collection.find(query, {"Prompt": 1, "_id": 0}) # Cursor'ı döküman listesine dönüştürme input_texts_from_db = [doc['Prompt'] for doc in cursor] # Input text'leri döndürme # Düz metin listesine dönüştürme return input_texts_from_db input_text= get_input_texts() print("metinler yazılıyor:") for text in input_text: print(text) @staticmethod def get_output_texts(): # MongoDB bağlantı bilgilerini alma mongo_url, db_name, collection_name = Database.get_mongodb() # MongoDB'ye bağlanma client = MongoClient(mongo_url) db = client[db_name] collection = db[collection_name] # Sorguyu tanımlama query = {"Response": {"$exists": True}} # Sorguyu çalıştırma ve dökümanları çekme cursor = collection.find(query, {"Response": 1, "_id": 0}) # Cursor'ı döküman listesine dönüştürme output_texts_from_db = [doc['Response'] for doc in cursor] #output metin listesine çevirme return output_texts_from_db @staticmethod def get_average_prompt_token_length(): # MongoDB bağlantı bilgilerini alma mongo_url, db_name, collection_name = Database.get_mongodb() # MongoDB'ye bağlanma client = MongoClient(mongo_url) db = client[db_name] collection = db[collection_name] # Tüm dökümanları çekme ve 'prompt_token_length' alanını alma docs = collection.find({}, {'Prompt_token_length': 1}) # 'prompt_token_length' değerlerini toplama ve sayma total_length = 0 count = 0 for doc in docs: if 'Prompt_token_length' in doc: total_length += doc['Prompt_token_length'] count += 1 # Ortalama hesaplama average_length = total_length / count if count > 0 else 0 return int(average_length) # Tokenizer ve Modeli yükleme """ class TokenizerProcessor: def __init__(self, tokenizer_name='bert-base-uncased'): self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name) def tokenize_and_encode(self, input_texts, output_texts, max_length=100): encoded = self.tokenizer.batch_encode_plus( text_pair=list(zip(input_texts, output_texts)), padding='max_length', truncation=True, max_length=max_length, return_attention_mask=True, return_tensors='pt' ) return encoded paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, return_tensors="pt") not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, return_tensors="pt") paraphrase_classification_logits = model(**paraphrase)[0] not_paraphrase_classification_logits = model(**not_paraphrase)[0] def custom_padding(self, input_ids_list, max_length=100, pad_token_id=0): padded_inputs = [] for ids in input_ids_list: if len(ids) < max_length: padded_ids = ids + [pad_token_id] * (max_length - len(ids)) else: padded_ids = ids[:max_length] padded_inputs.append(padded_ids) return padded_inputs def pad_and_truncate_pairs(self, input_texts, output_texts, max_length=100): #input ve output verilerinin uzunluğunu eşitleme inputs = self.tokenizer(input_texts, padding=False, truncation=False, return_tensors=None) outputs = self.tokenizer(output_texts, padding=False, truncation=False, return_tensors=None) input_ids = self.custom_padding(inputs['input_ids'], max_length, self.tokenizer.pad_token_id) output_ids = self.custom_padding(outputs['input_ids'], max_length, self.tokenizer.pad_token_id) input_ids_tensor = torch.tensor(input_ids) output_ids_tensor = torch.tensor(output_ids) input_attention_mask = (input_ids_tensor != self.tokenizer.pad_token_id).long() output_attention_mask = (output_ids_tensor != self.tokenizer.pad_token_id).long() return { 'input_ids': input_ids_tensor, 'input_attention_mask': input_attention_mask, 'output_ids': output_ids_tensor, 'output_attention_mask': output_attention_mask } """ #cümleleri teker teker input ve output verilerinden çekmem gerekiyor #def tokenize_and_pad_sequences(sequence_1,sequence2,) """class DataPipeline: def __init__(self, tokenizer_name='bert-base-uncased', max_length=100): self.tokenizer_processor = TokenizerProcessor(tokenizer_name) self.max_length = max_length def prepare_data(self): input_texts = Database.get_input_texts() output_texts = Database.get_output_texts() encoded_data = self.tokenizer_processor.pad_and_truncate_pairs(input_texts, output_texts, self.max_length) return encoded_data def tokenize_texts(self, texts): return [self.tokenize(text) for text in texts] def encode_texts(self, texts): return [self.encode(text, self.max_length) for text in texts] # Example Usage if __name__ == "__main__": data_pipeline = DataPipeline() encoded_data = data_pipeline.prepare_data() print(encoded_data) """