""" taken from https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/utils.py """ import torch import torch.nn.functional as F import numpy as np from PIL import Image attn_maps = {} def hook_fn(name): def forward_hook(module, input, output): if hasattr(module.processor, "attn_map"): attn_maps[name] = module.processor.attn_map del module.processor.attn_map return forward_hook def register_cross_attention_hook(unet): for name, module in unet.named_modules(): if name.split('.')[-1].startswith('attn2'): module.register_forward_hook(hook_fn(name)) return unet def upscale(attn_map, target_size): attn_map = torch.mean(attn_map, dim=0) attn_map = attn_map.permute(1,0) temp_size = None for i in range(0,5): scale = 2 ** i if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64: temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8)) break assert temp_size is not None, "temp_size cannot is None" attn_map = attn_map.view(attn_map.shape[0], *temp_size) attn_map = F.interpolate( attn_map.unsqueeze(0).to(dtype=torch.float32), size=target_size, mode='bilinear', align_corners=False )[0] attn_map = torch.softmax(attn_map, dim=0) return attn_map def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True): idx = 0 if instance_or_negative else 1 net_attn_maps = [] for name, attn_map in attn_maps.items(): attn_map = attn_map.cpu() if detach else attn_map attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze() attn_map = upscale(attn_map, image_size) net_attn_maps.append(attn_map) net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0) return net_attn_maps def attnmaps2images(net_attn_maps): #total_attn_scores = 0 images = [] for attn_map in net_attn_maps: attn_map = attn_map.cpu().numpy() #total_attn_scores += attn_map.mean().item() normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255 normalized_attn_map = normalized_attn_map.astype(np.uint8) #print("norm: ", normalized_attn_map.shape) image = Image.fromarray(normalized_attn_map) #image = fix_save_attn_map(attn_map) images.append(image) #print(total_attn_scores) return images def is_torch2_available(): return hasattr(F, "scaled_dot_product_attention") def get_generator(seed, device): if seed is not None: if isinstance(seed, list): generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed] else: generator = torch.Generator(device).manual_seed(seed) else: generator = None return generator