PuLID-FLUX / pulid /attention_processor.py
邬彦泽
1
aa8012e
raw
history blame
16.4 kB
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
import torch
import torch.nn as nn
import torch.nn.functional as F
NUM_ZERO = 0
ORTHO = False
ORTHO_v2 = False
class AttnProcessor(nn.Module):
def __init__(self):
super().__init__()
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
id_embedding=None,
id_scale=1.0,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IDAttnProcessor(nn.Module):
r"""
Attention processor for ID-Adapater.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, hidden_size, cross_attention_dim=None):
super().__init__()
self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
id_embedding=None,
id_scale=1.0,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# for id-adapter
if id_embedding is not None:
if NUM_ZERO == 0:
id_key = self.id_to_k(id_embedding)
id_value = self.id_to_v(id_embedding)
else:
zero_tensor = torch.zeros(
(id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)),
dtype=id_embedding.dtype,
device=id_embedding.device,
)
id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1))
id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1))
id_key = attn.head_to_batch_dim(id_key).to(query.dtype)
id_value = attn.head_to_batch_dim(id_value).to(query.dtype)
id_attention_probs = attn.get_attention_scores(query, id_key, None)
id_hidden_states = torch.bmm(id_attention_probs, id_value)
id_hidden_states = attn.batch_to_head_dim(id_hidden_states)
if not ORTHO:
hidden_states = hidden_states + id_scale * id_hidden_states
else:
projection = (
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True)
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
* hidden_states
)
orthogonal = id_hidden_states - projection
hidden_states = hidden_states + id_scale * orthogonal
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class AttnProcessor2_0(nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
id_embedding=None,
id_scale=1.0,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IDAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for ID-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
"""
def __init__(self, hidden_size, cross_attention_dim=None):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
id_embedding=None,
id_scale=1.0,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# for id embedding
if id_embedding is not None:
if NUM_ZERO == 0:
id_key = self.id_to_k(id_embedding).to(query.dtype)
id_value = self.id_to_v(id_embedding).to(query.dtype)
else:
zero_tensor = torch.zeros(
(id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)),
dtype=id_embedding.dtype,
device=id_embedding.device,
)
id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype)
id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype)
id_key = id_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
id_value = id_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
id_hidden_states = F.scaled_dot_product_attention(
query, id_key, id_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
id_hidden_states = id_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
id_hidden_states = id_hidden_states.to(query.dtype)
if not ORTHO and not ORTHO_v2:
hidden_states = hidden_states + id_scale * id_hidden_states
elif ORTHO_v2:
orig_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
id_hidden_states = id_hidden_states.to(torch.float32)
attn_map = query @ id_key.transpose(-2, -1)
attn_mean = attn_map.softmax(dim=-1).mean(dim=1)
attn_mean = attn_mean[:, :, :5].sum(dim=-1, keepdim=True)
projection = (
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True)
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
* hidden_states
)
orthogonal = id_hidden_states + (attn_mean - 1) * projection
hidden_states = hidden_states + id_scale * orthogonal
hidden_states = hidden_states.to(orig_dtype)
else:
orig_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
id_hidden_states = id_hidden_states.to(torch.float32)
projection = (
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True)
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
* hidden_states
)
orthogonal = id_hidden_states - projection
hidden_states = hidden_states + id_scale * orthogonal
hidden_states = hidden_states.to(orig_dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states