Spaces:
Sleeping
Sleeping
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
import torch | |
from models.croco import CroCoNet | |
from PIL import Image | |
import torchvision.transforms | |
from torchvision.transforms import ToTensor, Normalize, Compose | |
def main(): | |
device = torch.device('cuda:0' if torch.cuda.is_available() and torch.cuda.device_count()>0 else 'cpu') | |
# load 224x224 images and transform them to tensor | |
imagenet_mean = [0.485, 0.456, 0.406] | |
imagenet_mean_tensor = torch.tensor(imagenet_mean).view(1,3,1,1).to(device, non_blocking=True) | |
imagenet_std = [0.229, 0.224, 0.225] | |
imagenet_std_tensor = torch.tensor(imagenet_std).view(1,3,1,1).to(device, non_blocking=True) | |
trfs = Compose([ToTensor(), Normalize(mean=imagenet_mean, std=imagenet_std)]) | |
image1 = trfs(Image.open('assets/Chateau1.png').convert('RGB')).to(device, non_blocking=True).unsqueeze(0) | |
image2 = trfs(Image.open('assets/Chateau2.png').convert('RGB')).to(device, non_blocking=True).unsqueeze(0) | |
# load model | |
ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu') | |
model = CroCoNet( **ckpt.get('croco_kwargs',{})).to(device) | |
model.eval() | |
msg = model.load_state_dict(ckpt['model'], strict=True) | |
# forward | |
with torch.inference_mode(): | |
out, mask, target = model(image1, image2) | |
# the output is normalized, thus use the mean/std of the actual image to go back to RGB space | |
patchified = model.patchify(image1) | |
mean = patchified.mean(dim=-1, keepdim=True) | |
var = patchified.var(dim=-1, keepdim=True) | |
decoded_image = model.unpatchify(out * (var + 1.e-6)**.5 + mean) | |
# undo imagenet normalization, prepare masked image | |
decoded_image = decoded_image * imagenet_std_tensor + imagenet_mean_tensor | |
input_image = image1 * imagenet_std_tensor + imagenet_mean_tensor | |
ref_image = image2 * imagenet_std_tensor + imagenet_mean_tensor | |
image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None]) | |
masked_input_image = ((1 - image_masks) * input_image) | |
# make visualization | |
visualization = torch.cat((ref_image, masked_input_image, decoded_image, input_image), dim=3) # 4*(B, 3, H, W) -> B, 3, H, W*4 | |
B, C, H, W = visualization.shape | |
visualization = visualization.permute(1, 0, 2, 3).reshape(C, B*H, W) | |
visualization = torchvision.transforms.functional.to_pil_image(torch.clamp(visualization, 0, 1)) | |
fname = "demo_output.png" | |
visualization.save(fname) | |
print('Visualization save in '+fname) | |
if __name__=="__main__": | |
main() | |