Spaces:
Running
on
Zero
Running
on
Zero
Update myturtle.py
Browse files- myturtle.py +272 -10
myturtle.py
CHANGED
@@ -1,34 +1,185 @@
|
|
1 |
import numpy as np
|
2 |
import cv2
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
HALF_INF = 63
|
5 |
INF = 126
|
6 |
EPS_DIST = 1/20
|
7 |
EPS_ANGLE = 2.86
|
8 |
-
SCALE = 15
|
|
|
|
|
|
|
|
|
9 |
|
10 |
class Turtle:
|
11 |
-
def __init__(self, canvas_size=(
|
12 |
-
self.x = canvas_size[0] // 2
|
13 |
-
self.y = canvas_size[1] // 2
|
14 |
self.heading = 0
|
15 |
self.canvas = np.ones((canvas_size[1], canvas_size[0], 3), dtype=np.uint8) * 255
|
16 |
self.is_down = True
|
|
|
|
|
|
|
17 |
|
18 |
def forward(self, dist):
|
|
|
|
|
|
|
|
|
19 |
dist = dist * SCALE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
x0, y0 = self.x, self.y
|
21 |
-
x1 =
|
22 |
-
y1 =
|
23 |
if self.is_down:
|
24 |
-
cv2.line(self.canvas, (x0, y0), (x1, y1), (0, 0, 0), 3)
|
25 |
self.x, self.y = x1, y1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def left(self, angle):
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def right(self, angle):
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def penup(self):
|
34 |
self.is_down = False
|
@@ -40,6 +191,17 @@ class Turtle:
|
|
40 |
if path:
|
41 |
cv2.imwrite(path, self.canvas)
|
42 |
return self.canvas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
class _TurtleState:
|
45 |
def __init__(self, turtle):
|
@@ -113,6 +275,7 @@ if __name__ == "__main__":
|
|
113 |
right(90)
|
114 |
forward(50)
|
115 |
save("test2.png")
|
|
|
116 |
|
117 |
def plot2():
|
118 |
for j in range(2):
|
@@ -127,5 +290,104 @@ if __name__ == "__main__":
|
|
127 |
left(180.0)
|
128 |
FINAL_IMAGE = turtle.save("")
|
129 |
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
# plot2()
|
|
|
1 |
import numpy as np
|
2 |
import cv2
|
3 |
|
4 |
+
|
5 |
+
def crop_and_scaled_imgs(imgs):
|
6 |
+
PAD = 10
|
7 |
+
# use the last image to find the bounding box of the non-white area and the transformation parameters
|
8 |
+
# and then apply the transformation to all images
|
9 |
+
|
10 |
+
|
11 |
+
img = imgs[-1]
|
12 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
13 |
+
# Threshold the image to create a binary mask
|
14 |
+
_, binary_mask = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY_INV)
|
15 |
+
|
16 |
+
# Find the coordinates of non-zero pixels
|
17 |
+
coords = cv2.findNonZero(binary_mask)
|
18 |
+
|
19 |
+
# Get the bounding box of the non-zero pixels
|
20 |
+
x, y, w, h = cv2.boundingRect(coords)
|
21 |
+
x -= PAD
|
22 |
+
y -= PAD
|
23 |
+
w += 2 * PAD
|
24 |
+
h += 2 * PAD
|
25 |
+
|
26 |
+
# Calculate the position to center the ROI in the 256x256 image
|
27 |
+
start_x = max(0, (256 - w) // 2)
|
28 |
+
start_y = max(0, (256 - h) // 2)
|
29 |
+
|
30 |
+
# Create a new 256x256 rgb images
|
31 |
+
new_imgs = [np.ones((256, 256, 3), dtype=np.uint8) * 255 for _ in range(len(imgs))]
|
32 |
+
for i in range(len(imgs)):
|
33 |
+
# Extract the ROI (region of interest) of the non-white area
|
34 |
+
roi = imgs[i][y:y+h, x:x+w]
|
35 |
+
# If the ROI is larger than 256x256, resize it
|
36 |
+
|
37 |
+
if w > 256 or h > 256:
|
38 |
+
scale = min(256 / w, 256 / h)
|
39 |
+
new_w = int(w * scale)
|
40 |
+
new_h = int(h * scale)
|
41 |
+
roi = cv2.resize(roi, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
42 |
+
w, h = new_w, new_h
|
43 |
+
|
44 |
+
# new_imgs[i] = np.ones((256, 256), dtype=np.uint8) * 255
|
45 |
+
# centered_img = np.ones((256, 256), dtype=np.uint8) * 255
|
46 |
+
|
47 |
+
# Place the ROI in the centered position
|
48 |
+
new_imgs[i][start_y:start_y+h, start_x:start_x+w] = roi
|
49 |
+
|
50 |
+
return new_imgs
|
51 |
+
|
52 |
+
|
53 |
HALF_INF = 63
|
54 |
INF = 126
|
55 |
EPS_DIST = 1/20
|
56 |
EPS_ANGLE = 2.86
|
57 |
+
SCALE = 15
|
58 |
+
|
59 |
+
MOVE_SPEED = 25
|
60 |
+
ROTATE_SPEED = 30
|
61 |
+
FPS = 24
|
62 |
|
63 |
class Turtle:
|
64 |
+
def __init__(self, canvas_size=(800, 800)):
|
65 |
+
self.x = canvas_size[0] // 2
|
66 |
+
self.y = canvas_size[1] // 2
|
67 |
self.heading = 0
|
68 |
self.canvas = np.ones((canvas_size[1], canvas_size[0], 3), dtype=np.uint8) * 255
|
69 |
self.is_down = True
|
70 |
+
self.time_since_last_frame = 0
|
71 |
+
self.frames = [self.canvas.copy()]
|
72 |
+
|
73 |
|
74 |
def forward(self, dist):
|
75 |
+
# print('st', self.x, self.y)
|
76 |
+
# self.forward_step(dist * SCALE)
|
77 |
+
# print('ed', self.x, self.y)
|
78 |
+
# return
|
79 |
dist = dist * SCALE
|
80 |
+
sign = 1 if dist > 0 else -1
|
81 |
+
abs_dist = abs(dist)
|
82 |
+
if self.time_since_last_frame + abs_dist / MOVE_SPEED >= 1:
|
83 |
+
dist1 = (1 - self.time_since_last_frame) * MOVE_SPEED
|
84 |
+
self.forward_step(dist1 * sign)
|
85 |
+
self.save_frame_with_turtle()
|
86 |
+
self.time_since_last_frame = 0
|
87 |
+
# for loop to step forward
|
88 |
+
num_steps = int((abs_dist - dist1) / MOVE_SPEED)
|
89 |
+
for _ in range(num_steps):
|
90 |
+
self.forward_step(MOVE_SPEED * sign)
|
91 |
+
self.save_frame_with_turtle()
|
92 |
+
last_abs_dist = abs_dist - dist1 - num_steps * MOVE_SPEED
|
93 |
+
if last_abs_dist >= MOVE_SPEED:
|
94 |
+
self.forward_step(MOVE_SPEED * sign)
|
95 |
+
self.save_frame_with_turtle()
|
96 |
+
last_abs_dist -= MOVE_SPEED
|
97 |
+
self.forward_step(last_abs_dist * sign)
|
98 |
+
self.time_since_last_frame = last_abs_dist / MOVE_SPEED
|
99 |
+
else:
|
100 |
+
self.forward_step(abs_dist * sign)
|
101 |
+
# self.time_since_last_frame += abs_dist / MOVE_SPEED
|
102 |
+
# if self.time_since_last_frame >= 1:
|
103 |
+
# self.time_since_last_frame = 0
|
104 |
+
|
105 |
+
def forward_step(self, dist):
|
106 |
+
# print('step', dist)
|
107 |
+
if dist == 0:
|
108 |
+
return
|
109 |
x0, y0 = self.x, self.y
|
110 |
+
x1 = (x0 + dist * np.cos(self.heading))
|
111 |
+
y1 = (y0 - dist * np.sin(self.heading))
|
112 |
if self.is_down:
|
113 |
+
cv2.line(self.canvas, (int(np.rint(x0)), int(np.rint(y0))), (int(np.rint(x1)), int(np.rint(y1))), (0, 0, 0), 3)
|
114 |
self.x, self.y = x1, y1
|
115 |
+
self.time_since_last_frame += abs(dist) / MOVE_SPEED
|
116 |
+
# self.frames.append(self.canvas.copy())
|
117 |
+
# self.save_frame_with_turtle()
|
118 |
+
|
119 |
+
def save_frame_with_turtle(self):
|
120 |
+
# save the current frame to frames buffer
|
121 |
+
# also plot a red triangle to represent the turtle pointing to the current direction
|
122 |
+
|
123 |
+
# draw the turtle
|
124 |
+
x, y = self.x, self.y
|
125 |
+
canvas_copy = self.canvas.copy()
|
126 |
+
triangle_size = 10
|
127 |
+
x0 = int(np.rint(x + triangle_size * np.cos(self.heading)))
|
128 |
+
y0 = int(np.rint(y - triangle_size * np.sin(self.heading)))
|
129 |
+
x1 = int(np.rint(x + triangle_size * np.cos(self.heading + 2 * np.pi / 3)))
|
130 |
+
y1 = int(np.rint(y - triangle_size * np.sin(self.heading + 2 * np.pi / 3)))
|
131 |
+
x2 = int(np.rint(x + triangle_size * np.cos(self.heading - 2 * np.pi / 3)))
|
132 |
+
y2 = int(np.rint(y - triangle_size * np.sin(self.heading - 2 * np.pi / 3)))
|
133 |
+
x3 = int(np.rint(x - 0.25 * triangle_size * np.cos(self.heading)))
|
134 |
+
y3 = int(np.rint(y + 0.25 * triangle_size * np.sin(self.heading)))
|
135 |
+
# fill the triangle
|
136 |
+
cv2.fillPoly(canvas_copy, [np.array([(x0, y0), (x1, y1), (x3, y3), (x2, y2)], dtype=np.int32)], (0, 0, 255))
|
137 |
+
|
138 |
+
self.frames.append(canvas_copy)
|
139 |
+
|
140 |
+
|
141 |
|
142 |
def left(self, angle):
|
143 |
+
# print('angel', angle)
|
144 |
+
# print('ast', self.heading)
|
145 |
+
# self.heading += angle * np.pi / 180
|
146 |
+
self.turn_to(angle)
|
147 |
+
# print('aed', self.heading)
|
148 |
|
149 |
def right(self, angle):
|
150 |
+
# print('angel', angle)
|
151 |
+
# print('ast', self.heading)
|
152 |
+
# self.heading -= angle * np.pi / 180
|
153 |
+
self.turn_to(-angle)
|
154 |
+
# print('aed', self.heading)
|
155 |
+
|
156 |
+
def turn_to(self, angle):
|
157 |
+
abs_angle = abs(angle)
|
158 |
+
sign = 1 if angle > 0 else -1
|
159 |
+
if self.time_since_last_frame + abs(angle) / ROTATE_SPEED > 1:
|
160 |
+
angle1 = (1 - self.time_since_last_frame) * ROTATE_SPEED
|
161 |
+
self.turn_to_step(angle1 * sign)
|
162 |
+
self.save_frame_with_turtle()
|
163 |
+
self.time_since_last_frame = 0
|
164 |
+
num_steps = int((abs_angle - angle1) / ROTATE_SPEED)
|
165 |
+
for _ in range(num_steps):
|
166 |
+
self.turn_to_step(ROTATE_SPEED * sign)
|
167 |
+
self.save_frame_with_turtle()
|
168 |
+
last_abs_angle = abs_angle - angle1 - num_steps * ROTATE_SPEED
|
169 |
+
if last_abs_angle >= ROTATE_SPEED:
|
170 |
+
self.turn_to_step(ROTATE_SPEED * sign)
|
171 |
+
self.save_frame_with_turtle()
|
172 |
+
last_abs_angle -= ROTATE_SPEED
|
173 |
+
self.turn_to_step(last_abs_angle * sign)
|
174 |
+
self.time_since_last_frame = last_abs_angle / ROTATE_SPEED
|
175 |
+
else:
|
176 |
+
self.turn_to_step(abs_angle * sign)
|
177 |
+
# self.time_since_last_frame += abs_angle / ROTATE_SPEED
|
178 |
+
|
179 |
+
def turn_to_step(self, angle):
|
180 |
+
# print('turn step', angle)
|
181 |
+
self.heading += angle * np.pi / 180
|
182 |
+
self.time_since_last_frame += abs(angle) / ROTATE_SPEED
|
183 |
|
184 |
def penup(self):
|
185 |
self.is_down = False
|
|
|
191 |
if path:
|
192 |
cv2.imwrite(path, self.canvas)
|
193 |
return self.canvas
|
194 |
+
|
195 |
+
def save_gif(self, path):
|
196 |
+
import imageio.v3 as iio
|
197 |
+
frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in self.frames]
|
198 |
+
print(f'number of frames: {len(frames_rgb)}')
|
199 |
+
frames_rgb.extend(FPS*2 * [frames_rgb[-1]])
|
200 |
+
|
201 |
+
frames_rgb = crop_and_scaled_imgs(frames_rgb)
|
202 |
+
# iio.imwrite(path, np.stack(frames_rgb), fps=30, plugin='pillow')
|
203 |
+
return iio.imwrite('<bytes>', np.stack(frames_rgb), fps=FPS, loop=0, plugin='pillow', format='gif')
|
204 |
+
|
205 |
|
206 |
class _TurtleState:
|
207 |
def __init__(self, turtle):
|
|
|
275 |
right(90)
|
276 |
forward(50)
|
277 |
save("test2.png")
|
278 |
+
return turtle.frames
|
279 |
|
280 |
def plot2():
|
281 |
for j in range(2):
|
|
|
290 |
left(180.0)
|
291 |
FINAL_IMAGE = turtle.save("")
|
292 |
|
293 |
+
def plot3():
|
294 |
+
frames = []
|
295 |
+
frames.append(np.array(turtle.save("")))
|
296 |
+
for j in range(2):
|
297 |
+
forward(2)
|
298 |
+
frames.append(np.array(turtle.save("")))
|
299 |
+
left(0.0)
|
300 |
+
for i in range(4):
|
301 |
+
forward(2)
|
302 |
+
left(90)
|
303 |
+
frames.append(np.array(turtle.save("")))
|
304 |
+
forward(0)
|
305 |
+
left(180.0)
|
306 |
+
forward(2)
|
307 |
+
left(180.0)
|
308 |
+
frames.append(np.array(turtle.save("")))
|
309 |
+
|
310 |
+
return frames
|
311 |
+
|
312 |
+
def make_gif(frames, filename):
|
313 |
+
import imageio
|
314 |
+
frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
|
315 |
+
imageio.mimsave(filename, frames_rgb, fps=30)
|
316 |
+
|
317 |
+
def make_gif2(frames, filename):
|
318 |
+
import imageio.v3 as iio
|
319 |
+
frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
|
320 |
+
print(f'number of frames: {len(frames_rgb)}')
|
321 |
+
iio.imwrite(filename, np.stack(frames_rgb), fps=30, plugin='pillow')
|
322 |
+
|
323 |
+
def make_gif3(frames, filename):
|
324 |
+
from moviepy.editor import ImageSequenceClip
|
325 |
+
clip = ImageSequenceClip(list(frames), fps=20)
|
326 |
+
clip.write_gif(filename, fps=20)
|
327 |
+
|
328 |
+
def make_gif4(frames, filename):
|
329 |
+
from array2gif import write_gif
|
330 |
+
write_gif(frames, filename, fps=20)
|
331 |
+
|
332 |
+
def make_gif5(frames, filename):
|
333 |
+
from PIL import Image
|
334 |
+
frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
|
335 |
+
images = [Image.fromarray(frame) for frame in frames_rgb]
|
336 |
+
images[0].save(filename, save_all=True, append_images=images[1:], duration=100, loop=0)
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
def plot4():
|
341 |
+
# the following program draws a treelike pattern
|
342 |
+
import random
|
343 |
+
|
344 |
+
def draw_tree(level, length, angle):
|
345 |
+
if level == 0:
|
346 |
+
return
|
347 |
+
else:
|
348 |
+
forward(length)
|
349 |
+
left(angle)
|
350 |
+
draw_tree(level-1, length*0.7, angle*0.8)
|
351 |
+
right(angle*2)
|
352 |
+
draw_tree(level-1, length*0.7, angle*0.8)
|
353 |
+
left(angle)
|
354 |
+
forward(-length)
|
355 |
+
|
356 |
+
random.seed(0) # Comment this line to change the randomness
|
357 |
+
for _ in range(7): # Adjust the number to control the density
|
358 |
+
draw_tree(5, 5, 30)
|
359 |
+
forward(0)
|
360 |
+
left(random.randint(0, 360))
|
361 |
+
turtle.save("test3.png")
|
362 |
+
return turtle.frames
|
363 |
+
|
364 |
+
def plot5():
|
365 |
+
for i in range(7):
|
366 |
+
with fork_state():
|
367 |
+
for j in range(4):
|
368 |
+
forward(2*i)
|
369 |
+
left(90.0)
|
370 |
+
return turtle.frames
|
371 |
+
|
372 |
+
|
373 |
+
# make_gif2(plot5(), "test.gif")
|
374 |
+
frames = plot5()
|
375 |
+
# frames = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
|
376 |
+
# breakpoint()
|
377 |
+
# from moviepy.editor import ImageClip, concatenate_videoclips
|
378 |
+
# clips = [ImageClip(frame).set_duration(1/24) for frame in frames]
|
379 |
+
# concat_clip = concatenate_videoclips(clips, method="compose")
|
380 |
+
# concat_clip.write_videofile("test.mp4", fps=24)
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
img_bytes_string = turtle.save_gif("")
|
385 |
+
# turtle.save('test3.png')
|
386 |
+
with open("test5.gif", "wb") as f:
|
387 |
+
f.write(img_bytes_string)
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
# example_plot()
|
393 |
# plot2()
|