File size: 13,069 Bytes
7c73423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
"""

## more statistics

code:

math:

digit:

whitespace:

top_oov: most frequent oov chars

ranking: thumb_up thumb_down

"""

import json
import os
import sys
from difflib import SequenceMatcher
import pandas as pd
from datasets import load_dataset
from utils.log_util import logger
from vocab import tokenizer_factory, TokenizerConfig
from typing import List, Optional, Union, Literal

CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))

common_units = ["g_bytes/b_tokens", "b_tokens/g_bytes", "t_bytes/t_tokens", "t_tokens/t_bytes", "n_chars/n_tokens", ]

common_corpuses = sorted(["cc100/en", "cc100/zh-Hans", "cc100/es", "cc100/fr", "cc100/de", "cc100/ko",
                          "cc100/fa", "cc100/ar", "cc100/ja"])

VALID_CODES_CC100 = [
    "am", "ar", "as", "az", "be", "bg", "bn", "bn_rom", "br", "bs", "ca", "cs", "cy", "da", "de",
    "el", "en", "eo", "es", "et", "eu", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gn", "gu",
    "ha", "he", "hi", "hi_rom", "hr", "ht", "hu", "hy", "id", "ig", "is", "it", "ja", "jv", "ka",
    "kk", "km", "kn", "ko", "ku", "ky", "la", "lg", "li", "ln", "lo", "lt", "lv", "mg", "mk", "ml",
    "mn", "mr", "ms", "my", "my_zaw", "ne", "nl", "no", "ns", "om", "or", "pa", "pl", "ps", "pt",
    "qu", "rm", "ro", "ru", "sa", "si", "sc", "sd", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv",
    "sw", "ta", "ta_rom", "te", "te_rom", "th", "tl", "tn", "tr", "ug", "uk", "ur", "ur_rom", "uz",
    "vi", "wo", "xh", "yi", "yo", "zh-Hans", "zh-Hant", "zu",
]


# code: https://huggingface.co/datasets/codeparrot/github-code-clean  python java c sql html
# math:

def get_n_bytes_of_string(string_text):
    n_bytes = len(string_text.encode("utf-8"))
    return n_bytes


def unit_convertor(stat, unit):
    n_tokens = stat["_n_tokens"]
    n_chars = stat["_n_chars"]
    n_bytes = stat["_n_bytes"]

    if n_tokens is None:
        return None

    n_tokens_in_billion = n_tokens / (1000 * 1000 * 1000)
    n_tokens_in_trillion = n_tokens / (1000 * 1000 * 1000 * 1000)
    n_bytes_in_mb = n_bytes / (1024 * 1024)
    n_bytes_in_gb = n_bytes_in_mb / 1024
    n_bytes_in_tb = n_bytes_in_gb / 1024
    # n_chars_in_billion = n_chars / (1000 * 1000 * 1000)

    if unit == "n_tokens/n_bytes":
        value = n_tokens / n_bytes
    elif unit in ["char/token", "chars_per_token"]:  # 重要:平均一个token包含多少个字符。
        value = n_chars / n_tokens
    elif unit in ["token/char", "tokens_per_char"]:  # 一个中文汉字需要几个token?
        value = n_tokens / n_chars
    elif unit == "g_bytes/b_tokens":
        value = n_bytes_in_gb / n_tokens_in_billion
    elif unit == "b_tokens/g_bytes":
        value = n_tokens_in_billion / n_bytes_in_gb
    elif unit == "t_bytes/t_tokens":  # 重要:
        value = n_bytes_in_tb / n_tokens_in_trillion
    elif unit == "t_tokens/t_bytes":
        value = n_tokens_in_trillion / n_bytes_in_tb
    else:
        raise "measure not support"
    return round(value, 3)


def _merge_stats_by_corpus(stats_by_corpus, oov_threshold=0.3):
    """

    """
    all_stats = list(stats_by_corpus.values())
    assert len(set([stats["tokenizer"] for stats in all_stats])) == 1
    lossless = all(stat['lossless'] for stat in all_stats)
    is_support = all(stat['oov_ratio'] < oov_threshold for stat in all_stats)

    merged_stats = {
        "tokenizer": all_stats[0]["tokenizer"],
        "organization": all_stats[0]["organization"],
        "vocab_size": all_stats[0]["vocab_size"],
        "_n_bytes": 0,
        "_n_tokens": 0 if is_support else None,
        "_n_chars": 0,
        "_n_oov_chars": 0,
        "lossless": True,
    }
    for stats in all_stats:
        merged_stats["_n_bytes"] += stats["_n_bytes"]
        merged_stats["_n_chars"] += stats["_n_chars"]
        if is_support:  # The number of tokens cannot be accurately counted, when there are too many UNKs.
            merged_stats["_n_tokens"] += stats["_n_tokens"]
        merged_stats["_n_oov_chars"] += stats["_n_oov_chars"]
        merged_stats["lossless"] &= stats['lossless']

    merged_stats.update({
        "oov_ratio": float("%.4g" % (stats["_n_oov_chars"] / stats["_n_chars"])),
        "lossless": lossless
    })
    return merged_stats


def to_dataframe(stats, units=None):
    if units is None:
        units = common_units
    elif not isinstance(units, list):
        units = [units]
    table = []

    for stat in stats.values():
        columns = {k: v for k, v in stat.items() if not k.startswith("_")}
        for unit in units:
            if unit not in stat:
                columns[unit] = unit_convertor(stat, unit)
            else:
                logger.error(f"unit {unit} not support")
        table.append(columns)
    df = pd.DataFrame(table)
    return df


cache = {}


def tokenize_corpus(

        tokenizer_name: str,

        corpuses: List[str],

        cache_dir: str = "stats"

) -> dict:
    """

    :param tokenizer_name:

    :param corpuses:

    :param cache_dir:

    :return:

    """

    def _assert_oov(tokenizer, oov_candidate):

        tokenizer.encode()

    def _char_based_oov(src_text, decoded_text, tokenizer):
        oov_charset = []  # keep the order in src_text
        decoded_charset = set(decoded_text)
        for char in dict.fromkeys(src_text):
            if char not in decoded_charset \
                    and char != tokenizer.decode(tokenizer.encode(char, add_special_tokens=False)):
                oov_charset.append(char)

        n_oov_chars = sum([1 for char in src_text if char in oov_charset])
        return n_oov_chars, oov_charset

    def _diff_path(src_text, decoded_text):
        s = SequenceMatcher(a=src_text, b=decoded_text)
        changes = []
        for tag, i1, i2, j1, j2 in s.get_opcodes():
            if tag != "equal":
                changes.append('{:7}   text[{}:{}] --> decoded_text[{}:{}] {!r:>8} --> {!r}'.format(
                    tag, i1, i2, j1, j2, src_text[i1:i2], decoded_text[j1:j2]))
        return changes

    def _tokenize(tokenizer, datasets, detail_path=None):
        """

        :param tokenizer:

        :param datasets:

        :param detail_path:

        :return:

        """
        n_bytes = 0
        n_tokens = 0
        n_chars = 0
        n_oov_chars = 0
        diff_details = []
        oov_charset = set()
        unk_token_id = None
        if hasattr(tokenizer, "unk_token"):
            unk_token_id = tokenizer.unk_token_id
        for dataset in datasets:
            for item in dataset:
                text = item["text"]
                n_bytes += get_n_bytes_of_string(text)
                n_chars += len(text)
                ids = tokenizer.encode(text, add_special_tokens=False)

                # detect oov
                decoded_text = tokenizer.decode(ids)
                decoded_text_without_unk = tokenizer.decode([token_id for token_id in ids if token_id != unk_token_id])
                if decoded_text != text:
                    _n_oov_chars, _oov_charset = _char_based_oov(text, decoded_text_without_unk, tokenizer)
                    diffs = _diff_path(text, decoded_text)
                    diff_details.append(
                        {
                            "text": text,
                            "decoded_text": decoded_text,
                            "diff": diffs,
                            "n_oov_chars": _n_oov_chars,
                            'oov_ratio': _n_oov_chars / len(text),
                            'oov_charset': json.dumps(_oov_charset, ensure_ascii=False),
                        }
                    )
                    n_oov_chars += _n_oov_chars
                    oov_charset.update(_oov_charset)
                n_tokens += len(ids)
        stat = {
            "_n_bytes": n_bytes,
            "_n_tokens": n_tokens,
            "_n_chars": n_chars,
            "_n_oov_chars": n_oov_chars,
            "oov_ratio": n_oov_chars / n_chars,
            '_oov_charset': json.dumps(list(oov_charset), ensure_ascii=False),
            "lossless": len(diff_details) == 0
        }

        if detail_path and diff_details:
            logger.info(f"saving tokenization detail to '{detail_path}'")
            with open(detail_path, "w", encoding="utf-8") as f:
                f.write(json.dumps(diff_details, ensure_ascii=False, indent=2))
                # print(f"{tokenizer_config.name_or_path}, {infer_tokenizer_type(tokenizer_config)}\n"
                #       f"lossless: false; unk_token: {get_unk(tokenizer_config)},"
                #       f" unk_ratio: {unk_count / len(encoding):.4f}; oov: []")
                # for diff_detail in diff_details:
                #         # print(f"text[{i}]     = {str(bytes(text[i:], 'utf-8'))}\n"
                #         #       f"decoding[{i}] = {str(bytes(decoding[i:], 'utf-8'))}")
                #         f.write(f"text= {json.dumps(text[i:], ensure_ascii=False)}, \n"
                #               f"decoding[{i}] = {json.dumps(decoding[i:], ensure_ascii=False)}")
        return stat

    # load from cache
    cache_id = f"{tokenizer_name} @ {'.'.join(corpuses)}"
    cache_path = os.path.join(cache_dir, "compression_rate.json")
    if not cache and os.path.exists(cache_path):
        with open(cache_path, "r", encoding="utf-8") as f_tmp:
            cache.update(json.load(f_tmp))
    if cache_id in cache:
        # logger.info(f"loading {cache_id} from in-memory cache")
        return cache[cache_id]

    # tokenize corpus
    tokenizer = tokenizer_factory.get_tokenizer(tokenizer_name)
    datasets = [load_dataset("eson/cc100-samples", corpus.replace("cc100/", ""), split="train") for corpus in corpuses]

    stat = {
        "tokenizer": tokenizer_factory.get_name_with_hyperlink(tokenizer_name),
        "organization": tokenizer_factory.get_tokenizer_config(tokenizer_name).org,
        "vocab_size": len(tokenizer),
    }
    tokenize_detail_dir = os.path.join(cache_dir, "compression_rate")
    os.makedirs(tokenize_detail_dir, exist_ok=True)
    tokenize_detail_path = os.path.join(tokenize_detail_dir, cache_id.replace("/", ".") + ".diff.json")
    stat.update(_tokenize(tokenizer, datasets, detail_path=tokenize_detail_path))
    # add basic info

    # save to cache
    len_before = len(cache)
    cache[cache_id] = stat
    len_after = len(cache)
    logger.info(f"saving '{cache_id}' to memory and file cache '{cache_path}': {len_before}->{len_after}")
    with open(cache_path, "w", encoding="utf-8") as f_tmp:
        json.dump(cache, f_tmp, ensure_ascii=False, indent=2)
    return stat


def get_compression_leaderboard(

        corpuses: List[str] = ['cc100/en'],

        unit: str = "b_tokens/g_bytes",

        tokenizer_filter: Optional[str] = None,

        return_type: Optional[Literal["dict", "dataframe"]] = "dataframe"

) -> Union[pd.DataFrame, dict]:
    """

    """
    logger.info(f"corpuses: {corpuses}; unit: {unit}; tokenizer_filter: {tokenizer_filter}")
    stats = {}
    if tokenizer_filter is not None:
        tokenizer_names = [tokenizer_name for tokenizer_name in tokenizer_factory.all_tokenizer_names
                           if tokenizer_filter.lower() in tokenizer_name.lower()]
    else:
        tokenizer_names = tokenizer_factory.all_tokenizer_names
    for tokenizer_name in tokenizer_names:
        stats_by_corpus = {}
        for corpus in corpuses:
            stats_by_corpus[corpus] = tokenize_corpus(tokenizer_name, [corpus])
        stats[tokenizer_name] = _merge_stats_by_corpus(stats_by_corpus)

    if return_type == "dataframe":
        token_number_unit, file_size_unit = unit.split("/")
        reverse_unit = f"{file_size_unit}/{token_number_unit}"
        stats = to_dataframe(stats, [unit, reverse_unit, "char/token"])
        stats = stats.sort_values(["oov_ratio", unit], ascending=[True, True])
        stats = stats.rename(columns={"oov_ratio": f' ⬆️oov_ratio'}).rename(columns={unit: f' ⬆️{unit}'})  # ⬇
    return stats


def main():
    if len(sys.argv) == 3:
        tokenizer_filter = [sys.argv[1]]
        corpuses = [sys.argv[2]]
    else:
        tokenizer_filter, corpuses = None, common_corpuses
        # tokenizer_filter, corpuses = "openai", ["cc100/en", "cc100/zh-Hans"]
        # tokenizer_filter, corpuses = "Qwen/Qwen1.5-14B", ["cc100/de"]
        # tokenizer_filter, corpuses = "Qwen/Qwen1.5-14B", ["cc100/ja"]  # oov 特别多
        # tokenizer_filter, corpuses = "google-bert/bert-base-uncased", ["cc100/ja", "cc100/zh-Hans"]  # oov 特别多
    df = get_compression_leaderboard(corpuses, tokenizer_filter=tokenizer_filter)
    # print(df.to_markdown(index=False, tablefmt='fancy_grid'))
    logger.info(f"\n{df.to_markdown(index=False)}")


if __name__ == "__main__":
    main()