my_gradio / gradio /processing_utils.py
xray918's picture
Upload folder using huggingface_hub
0ad74ed verified
from __future__ import annotations
import asyncio
import base64
import hashlib
import ipaddress
import json
import logging
import os
import shutil
import socket
import ssl
import subprocess
import tempfile
import warnings
from collections.abc import Awaitable, Callable, Coroutine
from functools import lru_cache, wraps
from io import BytesIO
from pathlib import Path
from typing import TYPE_CHECKING, Any, TypeVar
from urllib.parse import urlparse
import aiofiles
import httpx
import numpy as np
from gradio_client import utils as client_utils
from PIL import Image, ImageOps, ImageSequence, PngImagePlugin
from gradio import utils, wasm_utils
from gradio.context import LocalContext
from gradio.data_classes import FileData, GradioModel, GradioRootModel, JsonData
from gradio.exceptions import Error, InvalidPathError
from gradio.route_utils import API_PREFIX
from gradio.utils import abspath, get_hash_seed, get_upload_folder, is_in_or_equal
with warnings.catch_warnings():
warnings.simplefilter("ignore") # Ignore pydub warning if ffmpeg is not installed
from pydub import AudioSegment
if wasm_utils.IS_WASM:
import pyodide.http # type: ignore
import urllib3
# NOTE: In the Wasm env, we use urllib3 to make HTTP requests. See https://github.com/gradio-app/gradio/issues/6837.
class Urllib3ResponseSyncByteStream(httpx.SyncByteStream):
def __init__(self, response: urllib3.HTTPResponse) -> None:
self.response = response
def __iter__(self):
yield from self.response.stream(decode_content=True)
class Urllib3Transport(httpx.BaseTransport):
def __init__(self):
self.pool = urllib3.PoolManager()
def handle_request(self, request: httpx.Request) -> httpx.Response:
url = str(request.url)
method = str(request.method)
headers = dict(request.headers)
body = None if method in ["GET", "HEAD"] else request.read()
response = self.pool.request(
headers=headers,
method=method,
url=url,
body=body,
preload_content=False, # Stream the content
)
# HTTPX's gzip decoder sometimes fails to decode the content in the Wasm env as https://github.com/gradio-app/gradio/pull/9333#issuecomment-2348048882,
# so we avoid it by removing the content-encoding header passed to httpx.Response,
# and handle the decoding in `Urllib3ResponseSyncByteStream.__iter__()` with `urllib3`'s implementation.
response_headers = response.headers.copy()
response_headers.discard("content-encoding")
return httpx.Response(
status_code=response.status,
headers=response_headers,
stream=Urllib3ResponseSyncByteStream(response),
)
sync_transport = Urllib3Transport()
class PyodideHttpResponseAsyncByteStream(httpx.AsyncByteStream):
def __init__(self, response: pyodide.http.FetchResponse) -> None:
self.response = response
async def __aiter__(self):
yield await self.response.bytes()
class PyodideHttpTransport(httpx.AsyncBaseTransport):
async def handle_async_request(
self,
request: httpx.Request,
) -> httpx.Response:
url = str(request.url)
method = request.method
headers = dict(request.headers)
# User-agent header is automatically set by the browser.
# More importantly, setting it causes an error on FireFox where a preflight request is made and it leads to a CORS error.
# Maybe related to https://bugzilla.mozilla.org/show_bug.cgi?id=1629921
del headers["user-agent"]
body = None if method in ["GET", "HEAD"] else await request.aread()
response = await pyodide.http.pyfetch(
url, method=method, headers=headers, body=body
)
return httpx.Response(
status_code=response.status,
headers=response.headers,
stream=PyodideHttpResponseAsyncByteStream(response),
)
async_transport = PyodideHttpTransport()
else:
sync_transport = None
async_transport = None
sync_client = httpx.Client(transport=sync_transport)
log = logging.getLogger(__name__)
if TYPE_CHECKING:
from gradio.blocks import Block
#########################
# GENERAL
#########################
def to_binary(x: str | dict) -> bytes:
"""Converts a base64 string or dictionary to a binary string that can be sent in a POST."""
if isinstance(x, dict):
if x.get("data"):
base64str = x["data"]
else:
base64str = client_utils.encode_url_or_file_to_base64(x["path"])
else:
base64str = x
return base64.b64decode(extract_base64_data(base64str))
def extract_base64_data(x: str) -> str:
"""Just extracts the base64 data from a general base64 string."""
return x.rsplit(",", 1)[-1]
#########################
# IMAGE PRE-PROCESSING
#########################
def encode_plot_to_base64(plt, format: str = "png"):
fmt = format or "png"
with BytesIO() as output_bytes:
plt.savefig(output_bytes, format=fmt)
bytes_data = output_bytes.getvalue()
base64_str = str(base64.b64encode(bytes_data), "utf-8")
return f"data:image/{format or 'png'};base64,{base64_str}"
def get_pil_exif_bytes(pil_image):
if "exif" in pil_image.info:
return pil_image.info["exif"]
def get_pil_metadata(pil_image):
# Copy any text-only metadata
metadata = PngImagePlugin.PngInfo()
for key, value in pil_image.info.items():
if isinstance(key, str) and isinstance(value, str):
metadata.add_text(key, value)
return metadata
def encode_pil_to_bytes(pil_image, format="png"):
with BytesIO() as output_bytes:
if format.lower() == "gif":
frames = [frame.copy() for frame in ImageSequence.Iterator(pil_image)]
frames[0].save(
output_bytes,
format=format,
save_all=True,
append_images=frames[1:],
loop=0,
)
else:
if format.lower() == "png":
params = {"pnginfo": get_pil_metadata(pil_image)}
else:
exif = get_pil_exif_bytes(pil_image)
params = {"exif": exif} if exif else {}
pil_image.save(output_bytes, format, **params)
return output_bytes.getvalue()
hash_seed = get_hash_seed().encode("utf-8")
def hash_file(file_path: str | Path, chunk_num_blocks: int = 128) -> str:
sha = hashlib.sha256()
sha.update(hash_seed)
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(chunk_num_blocks * sha.block_size), b""):
sha.update(chunk)
return sha.hexdigest()
def hash_url(url: str) -> str:
sha = hashlib.sha256()
sha.update(hash_seed)
sha.update(url.encode("utf-8"))
return sha.hexdigest()
def hash_bytes(bytes: bytes):
sha = hashlib.sha256()
sha.update(hash_seed)
sha.update(bytes)
return sha.hexdigest()
def hash_base64(base64_encoding: str, chunk_num_blocks: int = 128) -> str:
sha = hashlib.sha256()
sha.update(hash_seed)
for i in range(0, len(base64_encoding), chunk_num_blocks * sha.block_size):
data = base64_encoding[i : i + chunk_num_blocks * sha.block_size]
sha.update(data.encode("utf-8"))
return sha.hexdigest()
def save_pil_to_cache(
img: Image.Image,
cache_dir: str,
name: str = "image",
format: str = "webp",
) -> str:
bytes_data = encode_pil_to_bytes(img, format)
temp_dir = Path(cache_dir) / hash_bytes(bytes_data)
temp_dir.mkdir(exist_ok=True, parents=True)
filename = str((temp_dir / f"{name}.{format}").resolve())
(temp_dir / f"{name}.{format}").resolve().write_bytes(bytes_data)
return filename
def save_img_array_to_cache(
arr: np.ndarray, cache_dir: str, format: str = "webp"
) -> str:
pil_image = Image.fromarray(_convert(arr, np.uint8, force_copy=False))
return save_pil_to_cache(pil_image, cache_dir, format=format)
def save_audio_to_cache(
data: np.ndarray, sample_rate: int, format: str, cache_dir: str
) -> str:
temp_dir = Path(cache_dir) / hash_bytes(data.tobytes())
temp_dir.mkdir(exist_ok=True, parents=True)
filename = str((temp_dir / f"audio.{format}").resolve())
audio_to_file(sample_rate, data, filename, format=format)
return filename
def save_bytes_to_cache(data: bytes, file_name: str, cache_dir: str) -> str:
path = Path(cache_dir) / hash_bytes(data)
path.mkdir(exist_ok=True, parents=True)
path = path / Path(file_name).name
path.write_bytes(data)
return str(path.resolve())
def save_file_to_cache(file_path: str | Path, cache_dir: str) -> str:
"""Returns a temporary file path for a copy of the given file path if it does
not already exist. Otherwise returns the path to the existing temp file."""
temp_dir = hash_file(file_path)
temp_dir = Path(cache_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = client_utils.strip_invalid_filename_characters(Path(file_path).name)
full_temp_file_path = str(abspath(temp_dir / name))
if not Path(full_temp_file_path).exists():
shutil.copy2(file_path, full_temp_file_path)
return full_temp_file_path
# Always return these URLs as is, without checking to see if they resolve
# to an internal IP address. This is because Hugging Face uses DNS splitting,
# which means that requests from HF Spaces to HF Datasets or HF Models
# may resolve to internal IP addresses even if they are publicly accessible.
PUBLIC_HOSTNAME_WHITELIST = ["hf.co", "huggingface.co"]
def is_public_ip(ip: str) -> bool:
try:
ip_obj = ipaddress.ip_address(ip)
return not (
ip_obj.is_private
or ip_obj.is_loopback
or ip_obj.is_link_local
or ip_obj.is_multicast
or ip_obj.is_reserved
)
except ValueError:
return False
T = TypeVar("T")
def lru_cache_async(maxsize: int = 128):
def decorator(
async_func: Callable[..., Coroutine[Any, Any, T]],
) -> Callable[..., Awaitable[T]]:
@lru_cache(maxsize=maxsize)
@wraps(async_func)
def wrapper(*args: Any, **kwargs: Any) -> Awaitable[T]:
return asyncio.create_task(async_func(*args, **kwargs))
return wrapper
return decorator
@lru_cache_async(maxsize=256)
async def async_resolve_hostname_google(hostname: str) -> list[str]:
async with httpx.AsyncClient() as client:
try:
response_v4 = await client.get(
f"https://dns.google/resolve?name={hostname}&type=A"
)
response_v6 = await client.get(
f"https://dns.google/resolve?name={hostname}&type=AAAA"
)
ips = []
for response in [response_v4.json(), response_v6.json()]:
ips.extend([answer["data"] for answer in response.get("Answer", [])])
return ips
except Exception:
return []
class AsyncSecureTransport(httpx.AsyncHTTPTransport):
def __init__(self, verified_ip: str):
self.verified_ip = verified_ip
super().__init__()
async def connect(
self,
hostname: str,
port: int,
_timeout: float | None = None,
ssl_context: ssl.SSLContext | None = None,
**_kwargs: Any,
):
loop = asyncio.get_event_loop()
sock = await loop.getaddrinfo(self.verified_ip, port)
sock = socket.socket(sock[0][0], sock[0][1])
await loop.sock_connect(sock, (self.verified_ip, port))
if ssl_context:
sock = ssl_context.wrap_socket(sock, server_hostname=hostname)
return sock
async def async_validate_url(url: str) -> str:
hostname = urlparse(url).hostname
if not hostname:
raise ValueError(f"URL {url} does not have a valid hostname")
try:
loop = asyncio.get_event_loop()
addrinfo = await loop.getaddrinfo(hostname, None)
except socket.gaierror as e:
raise ValueError(f"Unable to resolve hostname {hostname}: {e}") from e
for family, _, _, _, sockaddr in addrinfo:
ip_address = sockaddr[0]
if family in (socket.AF_INET, socket.AF_INET6) and is_public_ip(ip_address):
return ip_address
if not wasm_utils.IS_WASM:
for ip_address in await async_resolve_hostname_google(hostname):
if is_public_ip(ip_address):
return ip_address
raise ValueError(f"Hostname {hostname} failed validation")
async def async_get_with_secure_transport(
url: str, trust_hostname: bool = False
) -> httpx.Response:
if wasm_utils.IS_WASM:
transport = PyodideHttpTransport()
elif trust_hostname:
transport = None
else:
verified_ip = await async_validate_url(url)
transport = AsyncSecureTransport(verified_ip)
async with httpx.AsyncClient(transport=transport) as client:
return await client.get(url, follow_redirects=False)
async def async_ssrf_protected_download(url: str, cache_dir: str) -> str:
temp_dir = Path(cache_dir) / hash_url(url)
temp_dir.mkdir(exist_ok=True, parents=True)
filename = client_utils.strip_invalid_filename_characters(Path(url).name)
full_temp_file_path = str(abspath(temp_dir / filename))
if Path(full_temp_file_path).exists():
return full_temp_file_path
parsed_url = urlparse(url)
hostname = parsed_url.hostname
response = await async_get_with_secure_transport(
url, trust_hostname=hostname in PUBLIC_HOSTNAME_WHITELIST
)
while response.is_redirect:
redirect_url = response.headers["Location"]
redirect_parsed = urlparse(redirect_url)
if not redirect_parsed.hostname:
redirect_url = f"{parsed_url.scheme}://{hostname}{redirect_url}"
response = await async_get_with_secure_transport(redirect_url)
if response.status_code != 200:
raise Exception(f"Failed to download file. Status code: {response.status_code}")
async with aiofiles.open(full_temp_file_path, "wb") as f:
async for chunk in response.aiter_bytes():
await f.write(chunk)
return full_temp_file_path
def unsafe_download(url: str, cache_dir: str) -> str:
temp_dir = Path(cache_dir) / hash_url(url)
temp_dir.mkdir(exist_ok=True, parents=True)
filename = client_utils.strip_invalid_filename_characters(Path(url).name)
full_temp_file_path = str(abspath(temp_dir / filename))
with (
sync_client.stream("GET", url, follow_redirects=True) as r,
open(full_temp_file_path, "wb") as f,
):
for chunk in r.iter_raw():
f.write(chunk)
# print path and file size
print(
f"Downloaded {full_temp_file_path} ({os.path.getsize(full_temp_file_path)} bytes)"
)
log.info(
f"Downloaded {full_temp_file_path} ({os.path.getsize(full_temp_file_path)} bytes)"
)
return full_temp_file_path
def ssrf_protected_download(url: str, cache_dir: str) -> str:
if wasm_utils.IS_WASM:
return unsafe_download(url, cache_dir)
else:
return client_utils.synchronize_async(
async_ssrf_protected_download, url, cache_dir
)
# Custom components created with versions of gradio < 5.0 may be using the processing_utils.save_url_to_cache method, so we alias to ssrf_protected_download to preserve backwards-compatibility
save_url_to_cache = ssrf_protected_download
def save_base64_to_cache(
base64_encoding: str, cache_dir: str, file_name: str | None = None
) -> str:
"""Converts a base64 encoding to a file and returns the path to the file if
the file doesn't already exist. Otherwise returns the path to the existing file.
"""
temp_dir = hash_base64(base64_encoding)
temp_dir = Path(cache_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
guess_extension = client_utils.get_extension(base64_encoding)
if file_name:
file_name = client_utils.strip_invalid_filename_characters(file_name)
elif guess_extension:
file_name = f"file.{guess_extension}"
else:
file_name = "file"
full_temp_file_path = str(abspath(temp_dir / file_name)) # type: ignore
if not Path(full_temp_file_path).exists():
data, _ = client_utils.decode_base64_to_binary(base64_encoding)
with open(full_temp_file_path, "wb") as fb:
fb.write(data)
return full_temp_file_path
def move_resource_to_block_cache(
url_or_file_path: str | Path | None, block: Block
) -> str | None:
"""This method has been replaced by Block.move_resource_to_block_cache(), but is
left here for backwards compatibility for any custom components created in Gradio 4.2.0 or earlier.
"""
return block.move_resource_to_block_cache(url_or_file_path)
def check_all_files_in_cache(data: JsonData):
def _in_cache(d: dict):
if (
(path := d.get("path", ""))
and not client_utils.is_http_url_like(path)
and not is_in_or_equal(path, get_upload_folder())
):
raise Error(
f"File {path} is not in the cache folder and cannot be accessed."
)
client_utils.traverse(data, _in_cache, client_utils.is_file_obj)
def move_files_to_cache(
data: Any,
block: Block,
postprocess: bool = False,
check_in_upload_folder=False,
keep_in_cache=False,
):
"""Move any files in `data` to cache and (optionally), adds URL prefixes (/file=...) needed to access the cached file.
Also handles the case where the file is on an external Gradio app (/proxy=...).
Runs after .postprocess() and before .preprocess().
Args:
data: The input or output data for a component. Can be a dictionary or a dataclass
block: The component whose data is being processed
postprocess: Whether its running from postprocessing
check_in_upload_folder: If True, instead of moving the file to cache, checks if the file is in already in cache (exception if not).
keep_in_cache: If True, the file will not be deleted from cache when the server is shut down.
"""
def _move_to_cache(d: dict):
payload = FileData(**d)
# If the gradio app developer is returning a URL from
# postprocess, it means the component can display a URL
# without it being served from the gradio server
# This makes it so that the URL is not downloaded and speeds up event processing
if payload.url and postprocess and client_utils.is_http_url_like(payload.url):
payload.path = payload.url
elif utils.is_static_file(payload):
pass
elif not block.proxy_url:
# If the file is on a remote server, do not move it to cache.
if not client_utils.is_http_url_like(payload.path):
_check_allowed(payload.path, check_in_upload_folder)
if not payload.is_stream:
temp_file_path = block.move_resource_to_block_cache(payload.path)
if temp_file_path is None:
raise ValueError("Did not determine a file path for the resource.")
payload.path = temp_file_path
if keep_in_cache:
block.keep_in_cache.add(payload.path)
url_prefix = (
f"{API_PREFIX}/stream/" if payload.is_stream else f"{API_PREFIX}/file="
)
if block.proxy_url:
proxy_url = block.proxy_url.rstrip("/")
url = f"{API_PREFIX}/proxy={proxy_url}{url_prefix}{payload.path}"
elif client_utils.is_http_url_like(payload.path) or payload.path.startswith(
f"{url_prefix}"
):
url = f"{payload.path}"
else:
url = f"{url_prefix}{payload.path}"
payload.url = url
return payload.model_dump()
if isinstance(data, (GradioRootModel, GradioModel)):
data = data.model_dump()
return client_utils.traverse(
data, _move_to_cache, client_utils.is_file_obj_with_meta
)
def _check_allowed(path: str | Path, check_in_upload_folder: bool):
blocks = LocalContext.blocks.get()
if blocks is None or not blocks.has_launched:
return
abs_path = utils.abspath(path)
created_paths = [utils.get_upload_folder()]
# if check_in_upload_folder=True, we are running this during pre-process
# in which case only files in the upload_folder (cache_dir) are accepted
if check_in_upload_folder:
allowed_paths = []
else:
allowed_paths = blocks.allowed_paths + [os.getcwd(), tempfile.gettempdir()]
allowed, reason = utils.is_allowed_file(
abs_path,
blocked_paths=blocks.blocked_paths,
allowed_paths=allowed_paths,
created_paths=created_paths,
)
if not allowed:
msg = f"Cannot move {abs_path} to the gradio cache dir because "
if reason == "in_blocklist":
msg += f"it is located in one of the blocked_paths ({', '.join(blocks.blocked_paths)})."
elif check_in_upload_folder:
msg += "it was not uploaded by a user."
else:
msg += "it was not created by the application or it is not "
msg += "located in either the current working directory or your system's temp directory. "
msg += "To fix this error, please ensure your function returns files located in either "
msg += f"the current working directory ({os.getcwd()}), your system's temp directory ({tempfile.gettempdir()}) "
msg += f"or add {str(abs_path.parent)} to the allowed_paths parameter of launch()."
raise InvalidPathError(msg)
if (
utils.is_in_or_equal(abs_path, os.getcwd())
and abs_path.name.startswith(".")
and not any(
is_in_or_equal(path, allowed_path) for allowed_path in blocks.allowed_paths
)
):
raise InvalidPathError(
"Dotfiles located in the temporary directory cannot be moved to the cache for security reasons. "
"If you'd like to specifically allow this file to be served, you can add it to the allowed_paths parameter of launch()."
)
async def async_move_files_to_cache(
data: Any,
block: Block,
postprocess: bool = False,
check_in_upload_folder=False,
keep_in_cache=False,
) -> dict:
"""Move any files in `data` to cache and (optionally), adds URL prefixes (/file=...) needed to access the cached file.
Also handles the case where the file is on an external Gradio app (/proxy=...).
Runs after .postprocess() and before .preprocess().
Args:
data: The input or output data for a component. Can be a dictionary or a dataclass
block: The component whose data is being processed
postprocess: Whether its running from postprocessing
check_in_upload_folder: If True, instead of moving the file to cache, checks if the file is in already in cache (exception if not).
keep_in_cache: If True, the file will not be deleted from cache when the server is shut down.
"""
async def _move_to_cache(d: dict):
payload = FileData(**d)
# If the gradio app developer is returning a URL from
# postprocess, it means the component can display a URL
# without it being served from the gradio server
# This makes it so that the URL is not downloaded and speeds up event processing
if payload.url and postprocess and client_utils.is_http_url_like(payload.url):
payload.path = payload.url
elif utils.is_static_file(payload):
pass
elif not block.proxy_url:
# If the file is on a remote server, do not move it to cache.
if not client_utils.is_http_url_like(payload.path):
_check_allowed(payload.path, check_in_upload_folder)
if not payload.is_stream:
temp_file_path = await block.async_move_resource_to_block_cache(
payload.path
)
if temp_file_path is None:
raise ValueError("Did not determine a file path for the resource.")
payload.path = temp_file_path
if keep_in_cache:
block.keep_in_cache.add(payload.path)
url_prefix = (
f"{API_PREFIX}/stream/" if payload.is_stream else f"{API_PREFIX}/file="
)
if block.proxy_url:
proxy_url = block.proxy_url.rstrip("/")
url = f"{API_PREFIX}/proxy={proxy_url}{url_prefix}{payload.path}"
elif client_utils.is_http_url_like(payload.path) or payload.path.startswith(
f"{url_prefix}"
):
url = payload.path
else:
url = f"{url_prefix}{payload.path}"
payload.url = url
return payload.model_dump()
if isinstance(data, (GradioRootModel, GradioModel)):
data = data.model_dump()
return await client_utils.async_traverse(
data, _move_to_cache, client_utils.is_file_obj_with_meta
)
def add_root_url(data: dict | list, root_url: str, previous_root_url: str | None):
def _add_root_url(file_dict: dict):
if previous_root_url and file_dict["url"].startswith(previous_root_url):
file_dict["url"] = file_dict["url"][len(previous_root_url) :]
elif client_utils.is_http_url_like(file_dict["url"]):
return file_dict
file_dict["url"] = f'{root_url}{file_dict["url"]}'
return file_dict
return client_utils.traverse(data, _add_root_url, client_utils.is_file_obj_with_url)
def resize_and_crop(img, size, crop_type="center"):
"""
Resize and crop an image to fit the specified size.
args:
size: `(width, height)` tuple. Pass `None` for either width or height
to only crop and resize the other.
crop_type: can be 'top', 'middle' or 'bottom', depending on this
value, the image will cropped getting the 'top/left', 'middle' or
'bottom/right' of the image to fit the size.
raises:
ValueError: if an invalid `crop_type` is provided.
"""
if crop_type == "top":
center = (0, 0)
elif crop_type == "center":
center = (0.5, 0.5)
else:
raise ValueError
resize = list(size)
if size[0] is None:
resize[0] = img.size[0]
if size[1] is None:
resize[1] = img.size[1]
return ImageOps.fit(img, resize, centering=center) # type: ignore
##################
# Audio
##################
def audio_from_file(
filename: str, crop_min: float = 0, crop_max: float = 100
) -> tuple[int, np.ndarray]:
try:
audio = AudioSegment.from_file(filename)
except FileNotFoundError as e:
isfile = Path(filename).is_file()
msg = (
f"Cannot load audio from file: `{'ffprobe' if isfile else filename}` not found."
+ " Please install `ffmpeg` in your system to use non-WAV audio file formats"
" and make sure `ffprobe` is in your PATH."
if isfile
else ""
)
raise RuntimeError(msg) from e
except OSError as e:
if wasm_utils.IS_WASM:
raise wasm_utils.WasmUnsupportedError(
"Audio format conversion is not supported in the Wasm mode."
) from e
raise e
if crop_min != 0 or crop_max != 100:
audio_start = len(audio) * crop_min / 100
audio_end = len(audio) * crop_max / 100
audio = audio[audio_start:audio_end]
data = np.array(audio.get_array_of_samples())
if audio.channels > 1:
data = data.reshape(-1, audio.channels)
return audio.frame_rate, data
def audio_to_file(sample_rate, data, filename, format="wav"):
if format == "wav":
data = convert_to_16_bit_wav(data)
elif wasm_utils.IS_WASM:
raise wasm_utils.WasmUnsupportedError(
"Audio formats other than .wav are not supported in the Wasm mode."
)
audio = AudioSegment(
data.tobytes(),
frame_rate=sample_rate,
sample_width=data.dtype.itemsize,
channels=(1 if len(data.shape) == 1 else data.shape[1]),
)
file = audio.export(filename, format=format)
file.close() # type: ignore
def convert_to_16_bit_wav(data):
# Based on: https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html
warning = "Trying to convert audio automatically from {} to 16-bit int format."
if data.dtype in [np.float64, np.float32, np.float16]:
warnings.warn(warning.format(data.dtype))
data = data / np.abs(data).max()
data = data * 32767
data = data.astype(np.int16)
elif data.dtype == np.int32:
warnings.warn(warning.format(data.dtype))
data = data / 65536
data = data.astype(np.int16)
elif data.dtype == np.int16:
pass
elif data.dtype == np.uint16:
warnings.warn(warning.format(data.dtype))
data = data - 32768
data = data.astype(np.int16)
elif data.dtype == np.uint8:
warnings.warn(warning.format(data.dtype))
data = data * 257 - 32768
data = data.astype(np.int16)
elif data.dtype == np.int8:
warnings.warn(warning.format(data.dtype))
data = data * 256
data = data.astype(np.int16)
else:
raise ValueError(
"Audio data cannot be converted automatically from "
f"{data.dtype} to 16-bit int format."
)
return data
##################
# OUTPUT
##################
def _convert(image, dtype, force_copy=False, uniform=False):
"""
Adapted from: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/dtype.py#L510-L531
Convert an image to the requested data-type.
Warnings are issued in case of precision loss, or when negative values
are clipped during conversion to unsigned integer types (sign loss).
Floating point values are expected to be normalized and will be clipped
to the range [0.0, 1.0] or [-1.0, 1.0] when converting to unsigned or
signed integers respectively.
Numbers are not shifted to the negative side when converting from
unsigned to signed integer types. Negative values will be clipped when
converting to unsigned integers.
Parameters
----------
image : ndarray
Input image.
dtype : dtype
Target data-type.
force_copy : bool, optional
Force a copy of the data, irrespective of its current dtype.
uniform : bool, optional
Uniformly quantize the floating point range to the integer range.
By default (uniform=False) floating point values are scaled and
rounded to the nearest integers, which minimizes back and forth
conversion errors.
.. versionchanged :: 0.15
``_convert`` no longer warns about possible precision or sign
information loss. See discussions on these warnings at:
https://github.com/scikit-image/scikit-image/issues/2602
https://github.com/scikit-image/scikit-image/issues/543#issuecomment-208202228
https://github.com/scikit-image/scikit-image/pull/3575
References
----------
.. [1] DirectX data conversion rules.
https://msdn.microsoft.com/en-us/library/windows/desktop/dd607323%28v=vs.85%29.aspx
.. [2] Data Conversions. In "OpenGL ES 2.0 Specification v2.0.25",
pp 7-8. Khronos Group, 2010.
.. [3] Proper treatment of pixels as integers. A.W. Paeth.
In "Graphics Gems I", pp 249-256. Morgan Kaufmann, 1990.
.. [4] Dirty Pixels. J. Blinn. In "Jim Blinn's corner: Dirty Pixels",
pp 47-57. Morgan Kaufmann, 1998.
"""
dtype_range = {
bool: (False, True),
np.bool_: (False, True),
float: (-1, 1),
np.float16: (-1, 1),
np.float32: (-1, 1),
np.float64: (-1, 1),
}
if hasattr(np, "float_"):
dtype_range[np.float_] = dtype_range[float] # type: ignore
if hasattr(np, "bool8"):
dtype_range[np.bool8] = dtype_range[np.bool_] # type: ignore
def _dtype_itemsize(itemsize, *dtypes):
"""Return first of `dtypes` with itemsize greater than `itemsize`
Parameters
----------
itemsize: int
The data type object element size.
Other Parameters
----------------
*dtypes:
Any Object accepted by `np.dtype` to be converted to a data
type object
Returns
-------
dtype: data type object
First of `dtypes` with itemsize greater than `itemsize`.
"""
return next(dt for dt in dtypes if np.dtype(dt).itemsize >= itemsize)
def _dtype_bits(kind, bits, itemsize=1):
"""Return dtype of `kind` that can store a `bits` wide unsigned int
Parameters:
kind: str
Data type kind.
bits: int
Desired number of bits.
itemsize: int
The data type object element size.
Returns
-------
dtype: data type object
Data type of `kind` that can store a `bits` wide unsigned int
"""
s = next(
i
for i in (itemsize,) + (2, 4, 8)
if bits < (i * 8) or (bits == (i * 8) and kind == "u")
)
return np.dtype(kind + str(s))
def _scale(a, n, m, copy=True):
"""Scale an array of unsigned/positive integers from `n` to `m` bits.
Numbers can be represented exactly only if `m` is a multiple of `n`.
Parameters
----------
a : ndarray
Input image array.
n : int
Number of bits currently used to encode the values in `a`.
m : int
Desired number of bits to encode the values in `out`.
copy : bool, optional
If True, allocates and returns new array. Otherwise, modifies
`a` in place.
Returns
-------
out : array
Output image array. Has the same kind as `a`.
"""
kind = a.dtype.kind
if n > m and a.max() < 2**m:
return a.astype(_dtype_bits(kind, m))
elif n == m:
return a.copy() if copy else a
elif n > m:
# downscale with precision loss
if copy:
b = np.empty(a.shape, _dtype_bits(kind, m))
np.floor_divide(a, 2 ** (n - m), out=b, dtype=a.dtype, casting="unsafe")
return b
else:
a //= 2 ** (n - m)
return a
elif m % n == 0:
# exact upscale to a multiple of `n` bits
if copy:
b = np.empty(a.shape, _dtype_bits(kind, m))
np.multiply(a, (2**m - 1) // (2**n - 1), out=b, dtype=b.dtype)
return b
else:
a = a.astype(_dtype_bits(kind, m, a.dtype.itemsize), copy=False)
a *= (2**m - 1) // (2**n - 1)
return a
else:
# upscale to a multiple of `n` bits,
# then downscale with precision loss
o = (m // n + 1) * n
if copy:
b = np.empty(a.shape, _dtype_bits(kind, o))
np.multiply(a, (2**o - 1) // (2**n - 1), out=b, dtype=b.dtype)
b //= 2 ** (o - m)
return b
else:
a = a.astype(_dtype_bits(kind, o, a.dtype.itemsize), copy=False)
a *= (2**o - 1) // (2**n - 1)
a //= 2 ** (o - m)
return a
image = np.asarray(image)
dtypeobj_in = image.dtype
dtypeobj_out = np.dtype("float64") if dtype is np.floating else np.dtype(dtype)
dtype_in = dtypeobj_in.type
dtype_out = dtypeobj_out.type
kind_in = dtypeobj_in.kind
kind_out = dtypeobj_out.kind
itemsize_in = dtypeobj_in.itemsize
itemsize_out = dtypeobj_out.itemsize
# Below, we do an `issubdtype` check. Its purpose is to find out
# whether we can get away without doing any image conversion. This happens
# when:
#
# - the output and input dtypes are the same or
# - when the output is specified as a type, and the input dtype
# is a subclass of that type (e.g. `np.floating` will allow
# `float32` and `float64` arrays through)
if hasattr(np, "obj2sctype"):
is_subdtype = np.issubdtype(dtype_in, np.obj2sctype(dtype)) # type: ignore
else:
is_subdtype = np.issubdtype(dtype_in, dtypeobj_out.type)
if is_subdtype:
if force_copy:
image = image.copy()
return image
if kind_in in "ui":
imin_in = np.iinfo(dtype_in).min
imax_in = np.iinfo(dtype_in).max
if kind_out in "ui":
imin_out = np.iinfo(dtype_out).min # type: ignore
imax_out = np.iinfo(dtype_out).max # type: ignore
# any -> binary
if kind_out == "b":
return image > dtype_in(dtype_range[dtype_in][1] / 2)
# binary -> any
if kind_in == "b":
result = image.astype(dtype_out)
if kind_out != "f":
result *= dtype_out(dtype_range[dtype_out][1])
return result
# float -> any
if kind_in == "f":
if kind_out == "f":
# float -> float
return image.astype(dtype_out)
if np.min(image) < -1.0 or np.max(image) > 1.0:
raise ValueError("Images of type float must be between -1 and 1.")
# floating point -> integer
# use float type that can represent output integer type
computation_type = _dtype_itemsize(
itemsize_out, dtype_in, np.float32, np.float64
)
if not uniform:
if kind_out == "u":
image_out = np.multiply(image, imax_out, dtype=computation_type) # type: ignore
else:
image_out = np.multiply(
image,
(imax_out - imin_out) / 2, # type: ignore
dtype=computation_type,
)
image_out -= 1.0 / 2.0
np.rint(image_out, out=image_out)
np.clip(image_out, imin_out, imax_out, out=image_out) # type: ignore
elif kind_out == "u":
image_out = np.multiply(image, imax_out + 1, dtype=computation_type) # type: ignore
np.clip(image_out, 0, imax_out, out=image_out) # type: ignore
else:
image_out = np.multiply(
image,
(imax_out - imin_out + 1.0) / 2.0, # type: ignore
dtype=computation_type,
)
np.floor(image_out, out=image_out)
np.clip(image_out, imin_out, imax_out, out=image_out) # type: ignore
return image_out.astype(dtype_out)
# signed/unsigned int -> float
if kind_out == "f":
# use float type that can exactly represent input integers
computation_type = _dtype_itemsize(
itemsize_in, dtype_out, np.float32, np.float64
)
if kind_in == "u":
# using np.divide or np.multiply doesn't copy the data
# until the computation time
image = np.multiply(image, 1.0 / imax_in, dtype=computation_type) # type: ignore
# DirectX uses this conversion also for signed ints
# if imin_in:
# np.maximum(image, -1.0, out=image)
else:
image = np.add(image, 0.5, dtype=computation_type)
image *= 2 / (imax_in - imin_in) # type: ignore
return np.asarray(image, dtype_out)
# unsigned int -> signed/unsigned int
if kind_in == "u":
if kind_out == "i":
# unsigned int -> signed int
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out - 1)
return image.view(dtype_out)
else:
# unsigned int -> unsigned int
return _scale(image, 8 * itemsize_in, 8 * itemsize_out)
# signed int -> unsigned int
if kind_out == "u":
image = _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out)
result = np.empty(image.shape, dtype_out)
np.maximum(image, 0, out=result, dtype=image.dtype, casting="unsafe")
return result
# signed int -> signed int
if itemsize_in > itemsize_out:
return _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out - 1)
image = image.astype(_dtype_bits("i", itemsize_out * 8))
image -= imin_in # type: ignore
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out, copy=False)
image += imin_out # type: ignore
return image.astype(dtype_out)
def ffmpeg_installed() -> bool:
if wasm_utils.IS_WASM:
# TODO: Support ffmpeg in WASM
return False
return shutil.which("ffmpeg") is not None
def video_is_playable(video_filepath: str) -> bool:
"""Determines if a video is playable in the browser.
A video is playable if it has a playable container and codec.
.mp4 -> h264
.webm -> vp9
.ogg -> theora
"""
from ffmpy import FFprobe, FFRuntimeError
try:
container = Path(video_filepath).suffix.lower()
probe = FFprobe(
global_options="-show_format -show_streams -select_streams v -print_format json",
inputs={video_filepath: None},
)
output = probe.run(stderr=subprocess.PIPE, stdout=subprocess.PIPE)
output = json.loads(output[0])
video_codec = output["streams"][0]["codec_name"]
return (container, video_codec) in [
(".mp4", "h264"),
(".ogg", "theora"),
(".webm", "vp9"),
]
# If anything goes wrong, assume the video can be played to not convert downstream
except (FFRuntimeError, IndexError, KeyError):
return True
def convert_video_to_playable_mp4(video_path: str) -> str:
"""Convert the video to mp4. If something goes wrong return the original video."""
from ffmpy import FFmpeg, FFRuntimeError
try:
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
output_path = Path(video_path).with_suffix(".mp4")
shutil.copy2(video_path, tmp_file.name)
# ffmpeg will automatically use h264 codec (playable in browser) when converting to mp4
ff = FFmpeg(
inputs={str(tmp_file.name): None},
outputs={str(output_path): None},
global_options="-y -loglevel quiet",
)
ff.run()
except FFRuntimeError as e:
print(f"Error converting video to browser-playable format {str(e)}")
output_path = video_path
finally:
# Remove temp file
os.remove(tmp_file.name) # type: ignore
return str(output_path)
def get_video_length(video_path: str | Path):
if wasm_utils.IS_WASM:
raise wasm_utils.WasmUnsupportedError(
"Video duration is not supported in the Wasm mode."
)
duration = subprocess.check_output(
[
"ffprobe",
"-i",
str(video_path),
"-show_entries",
"format=duration",
"-v",
"quiet",
"-of",
"csv={}".format("p=0"),
]
)
duration_str = duration.decode("utf-8").strip()
duration_float = float(duration_str)
return duration_float