my_gradio / gradio /external_utils.py
xray918's picture
Upload folder using huggingface_hub
0ad74ed verified
"""Utility function for gradio/external.py, designed for internal use."""
from __future__ import annotations
import base64
import math
import re
import warnings
import httpx
import yaml
from huggingface_hub import HfApi, ImageClassificationOutputElement, InferenceClient
from gradio import components
def get_model_info(model_name, hf_token=None):
hf_api = HfApi(token=hf_token)
print(f"Fetching model from: https://huggingface.co/{model_name}")
model_info = hf_api.model_info(model_name)
pipeline = model_info.pipeline_tag
tags = model_info.tags
return pipeline, tags
##################
# Helper functions for processing tabular data
##################
def get_tabular_examples(model_name: str) -> dict[str, list[float]]:
readme = httpx.get(f"https://huggingface.co/{model_name}/resolve/main/README.md")
if readme.status_code != 200:
warnings.warn(f"Cannot load examples from README for {model_name}", UserWarning)
example_data = {}
else:
yaml_regex = re.search(
"(?:^|[\r\n])---[\n\r]+([\\S\\s]*?)[\n\r]+---([\n\r]|$)", readme.text
)
if yaml_regex is None:
example_data = {}
else:
example_yaml = next(
yaml.safe_load_all(readme.text[: yaml_regex.span()[-1]])
)
example_data = example_yaml.get("widget", {}).get("structuredData", {})
if not example_data:
raise ValueError(
f"No example data found in README.md of {model_name} - Cannot build gradio demo. "
"See the README.md here: https://huggingface.co/scikit-learn/tabular-playground/blob/main/README.md "
"for a reference on how to provide example data to your model."
)
# replace nan with string NaN for inference Endpoints
for data in example_data.values():
for i, val in enumerate(data):
if isinstance(val, float) and math.isnan(val):
data[i] = "NaN"
return example_data
def cols_to_rows(
example_data: dict[str, list[float | str] | None],
) -> tuple[list[str], list[list[float]]]:
headers = list(example_data.keys())
n_rows = max(len(example_data[header] or []) for header in headers)
data = []
for row_index in range(n_rows):
row_data = []
for header in headers:
col = example_data[header] or []
if row_index >= len(col):
row_data.append("NaN")
else:
row_data.append(col[row_index])
data.append(row_data)
return headers, data
def rows_to_cols(incoming_data: dict) -> dict[str, dict[str, dict[str, list[str]]]]:
data_column_wise = {}
for i, header in enumerate(incoming_data["headers"]):
data_column_wise[header] = [str(row[i]) for row in incoming_data["data"]]
return {"inputs": {"data": data_column_wise}}
##################
# Helper functions for processing other kinds of data
##################
def postprocess_label(scores: list[ImageClassificationOutputElement]) -> dict:
return {c.label: c.score for c in scores}
def postprocess_mask_tokens(scores: list[dict[str, str | float]]) -> dict:
return {c["token_str"]: c["score"] for c in scores}
def postprocess_question_answering(answer: dict) -> tuple[str, dict]:
return answer["answer"], {answer["answer"]: answer["score"]}
def postprocess_visual_question_answering(scores: list[dict[str, str | float]]) -> dict:
return {c["answer"]: c["score"] for c in scores}
def zero_shot_classification_wrapper(client: InferenceClient):
def zero_shot_classification_inner(input: str, labels: str, multi_label: bool):
return client.zero_shot_classification(
input, labels.split(","), multi_label=multi_label
)
return zero_shot_classification_inner
def sentence_similarity_wrapper(client: InferenceClient):
def sentence_similarity_inner(input: str, sentences: str):
return client.sentence_similarity(input, sentences.split("\n"))
return sentence_similarity_inner
def text_generation_wrapper(client: InferenceClient):
def text_generation_inner(input: str):
return input + client.text_generation(input)
return text_generation_inner
def conversational_wrapper(client: InferenceClient):
def chat_fn(message, history):
if not history:
history = []
history.append({"role": "user", "content": message})
result = client.chat_completion(history)
return result.choices[0].message.content
return chat_fn
def encode_to_base64(r: httpx.Response) -> str:
# Handles the different ways HF API returns the prediction
base64_repr = base64.b64encode(r.content).decode("utf-8")
data_prefix = ";base64,"
# Case 1: base64 representation already includes data prefix
if data_prefix in base64_repr:
return base64_repr
else:
content_type = r.headers.get("content-type")
# Case 2: the data prefix is a key in the response
if content_type == "application/json":
try:
data = r.json()[0]
content_type = data["content-type"]
base64_repr = data["blob"]
except KeyError as ke:
raise ValueError(
"Cannot determine content type returned by external API."
) from ke
# Case 3: the data prefix is included in the response headers
else:
pass
new_base64 = f"data:{content_type};base64,{base64_repr}"
return new_base64
def format_ner_list(input_string: str, ner_groups: list[dict[str, str | int]]):
if len(ner_groups) == 0:
return [(input_string, None)]
output = []
end = 0
prev_end = 0
for group in ner_groups:
entity, start, end = group["entity_group"], group["start"], group["end"]
output.append((input_string[prev_end:start], None))
output.append((input_string[start:end], entity))
prev_end = end
output.append((input_string[end:], None))
return output
def token_classification_wrapper(client: InferenceClient):
def token_classification_inner(input: str):
ner_list = client.token_classification(input)
return format_ner_list(input, ner_list) # type: ignore
return token_classification_inner
def object_detection_wrapper(client: InferenceClient):
def object_detection_inner(input: str):
annotations = client.object_detection(input)
formatted_annotations = [
(
(
a["box"]["xmin"],
a["box"]["ymin"],
a["box"]["xmax"],
a["box"]["ymax"],
),
a["label"],
)
for a in annotations
]
return (input, formatted_annotations)
return object_detection_inner
def chatbot_preprocess(text, state):
if not state:
return text, [], []
return (
text,
state["conversation"]["generated_responses"],
state["conversation"]["past_user_inputs"],
)
def chatbot_postprocess(response):
chatbot_history = list(
zip(
response["conversation"]["past_user_inputs"],
response["conversation"]["generated_responses"],
strict=False,
)
)
return chatbot_history, response
def tabular_wrapper(client: InferenceClient, pipeline: str):
# This wrapper is needed to handle an issue in the InfereneClient where the model name is not
# automatically loaded when using the tabular_classification and tabular_regression methods.
# See: https://github.com/huggingface/huggingface_hub/issues/2015
def tabular_inner(data):
if pipeline not in ("tabular_classification", "tabular_regression"):
raise TypeError(f"pipeline type {pipeline!r} not supported")
assert client.model # noqa: S101
if pipeline == "tabular_classification":
return client.tabular_classification(data, model=client.model)
else:
return client.tabular_regression(data, model=client.model)
return tabular_inner
##################
# Helper function for cleaning up an Interface loaded from HF Spaces
##################
def streamline_spaces_interface(config: dict) -> dict:
"""Streamlines the interface config dictionary to remove unnecessary keys."""
config["inputs"] = [
components.get_component_instance(component)
for component in config["input_components"]
]
config["outputs"] = [
components.get_component_instance(component)
for component in config["output_components"]
]
parameters = {
"article",
"description",
"flagging_options",
"inputs",
"outputs",
"title",
}
config = {k: config[k] for k in parameters}
return config